Adaptive Real-Time Decomposition of Electromyogram During Sustained Muscle Activation: A Simulation Study

分解 计算机科学 物理医学与康复 化学 医学 有机化学
作者
Yang Zheng,Xiaogang Hu
标识
DOI:10.17615/qc0j-er53
摘要

OBJECTIVE: Real-time decomposition of electromyogram (EMG) into constituent motor unit (MU) activity has shown promising applications in neurophysiology and human-machine interactions. Existing decomposition methods could not accommodate stochastic variations in EMG signals such as drifts of action potential amplitudes and MU recruitment-derecruitment (rotation) patterns during long-term recordings. The objective of this study was to develop an adaptive real-time decomposition approach suitable for prolonged muscle activation. METHODS: We developed a parallel-double-thread computation algorithm. The backend thread initiated and periodically refined and updated the MU information (separation matrix) using independent component analysis and convolution kernel compensation. The frontend thread performed the real-time decomposition. We evaluated our algorithm on synthesized high-density EMG signals, in which MUs were recruited-derecruited sporadically and MU action potentials amplitude drifted over time. Different signal-to-noise levels were also simulated. RESULTS: Compared with the decomposition without the adaptive processes, periodically fine-tuned and updated separation matrix increased identifiable MU number by 3-4 fold over 30-minute of signals. The increased MU number was more prominent at higher signal-to-noise ratios. The decomposition accuracy also increased by up to 10% with greater improvement observed at higher muscle contraction levels. CONCLUSION: The adaptive algorithm can maintain the decomposition performance over time, allows us to continuously track the same MUs during sustained activation, and, at the same time, can add newly recruited MU information to existing separation matrix. SIGNIFICANCE: Our approach showed robust performance over time, which has the potential to longitudinally evaluate MU firing and recruitment properties and improve neural decoding performance for neural-machine interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强哥发布了新的文献求助10
刚刚
小蘑菇应助MM216采纳,获得10
刚刚
大个应助微笑的南风采纳,获得10
刚刚
Daria完成签到 ,获得积分10
1秒前
1秒前
qq发布了新的文献求助10
2秒前
aaaa完成签到,获得积分10
2秒前
czz完成签到 ,获得积分10
2秒前
2秒前
丘比特应助啊懂采纳,获得10
2秒前
月亮打盹儿完成签到,获得积分10
3秒前
吉吉发布了新的文献求助10
3秒前
可爱败发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
张阳发布了新的文献求助10
4秒前
Sophia发布了新的文献求助10
4秒前
想吃螺蛳粉应助1223采纳,获得10
5秒前
5秒前
suantou关注了科研通微信公众号
5秒前
图图发布了新的文献求助10
6秒前
6秒前
6秒前
张甜完成签到,获得积分10
7秒前
加油kiki完成签到,获得积分20
8秒前
23发布了新的文献求助10
8秒前
Lucas应助ramon采纳,获得10
8秒前
无花果应助快乐的菠萝采纳,获得10
8秒前
Iris发布了新的文献求助10
8秒前
9秒前
flypig1616发布了新的文献求助10
9秒前
李铃锐完成签到,获得积分10
9秒前
强哥完成签到,获得积分10
9秒前
10秒前
郭1990发布了新的文献求助10
10秒前
baiyang99完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786