Sleep staging algorithm based on smartwatch sensors for healthy and sleep apnea populations

智能手表 睡眠呼吸暂停 睡眠(系统调用) 医学 听力学 计算机科学 可穿戴计算机 物理医学与康复 算法 内科学 嵌入式系统 操作系统
作者
Fernanda B. Silva,Luisa Fernanda Suárez Uribe,Felipe X. Cepeda,Vitor F.S. Alquati,Joao Paulo Guimaraes,Yuri G.A. Silva,Orlem L. dos Santos,Alberto A. de Oliveira,Gabriel H.M. de Aguiar,Mônica L. Andersen,Sérgio Tufik,Won Yong Lee,Lin Tzy Li,Otávio A. B. Penatti
出处
期刊:Sleep Medicine [Elsevier BV]
卷期号:119: 535-548 被引量:4
标识
DOI:10.1016/j.sleep.2024.05.033
摘要

Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions. In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-seconds epoch. This solution was developed using a large dataset of 1,522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch. In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6% of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings. The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芭拉芭拉叭完成签到,获得积分10
1秒前
NexusExplorer应助yy030421采纳,获得10
2秒前
3秒前
lyx发布了新的文献求助10
3秒前
小二郎应助勤恳小丸子采纳,获得30
3秒前
4秒前
小鱼儿发布了新的文献求助10
5秒前
染唔唔发布了新的文献求助30
7秒前
chen完成签到,获得积分10
7秒前
谢小盟应助吃瓜不吐籽采纳,获得10
8秒前
9秒前
11秒前
小马甲应助武琳捷采纳,获得10
11秒前
晴明关发布了新的文献求助10
13秒前
14秒前
芋泥波波完成签到,获得积分10
15秒前
xpeng发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
18秒前
华仔应助天叶采纳,获得10
18秒前
19秒前
20秒前
xiaoxuening发布了新的文献求助10
21秒前
21秒前
孟筱发布了新的文献求助10
22秒前
科研通AI2S应助咩咩采纳,获得10
22秒前
可爱的函函应助xpeng采纳,获得10
22秒前
阿卡布拉完成签到 ,获得积分10
23秒前
思源应助Theprisoners采纳,获得10
24秒前
24秒前
小粽子发布了新的文献求助10
24秒前
zzm发布了新的文献求助10
25秒前
今后应助昇mss采纳,获得10
26秒前
机智的凡梦完成签到,获得积分10
27秒前
郑策元发布了新的文献求助10
28秒前
勤恳小丸子完成签到,获得积分10
29秒前
英姑应助112采纳,获得10
29秒前
乾清宫喝奶茶完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 1000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4438111
求助须知:如何正确求助?哪些是违规求助? 3911569
关于积分的说明 12148116
捐赠科研通 3558169
什么是DOI,文献DOI怎么找? 1953156
邀请新用户注册赠送积分活动 992988
科研通“疑难数据库(出版商)”最低求助积分说明 888508