3D printing of layered brain-like structures using peptide modified gellan gum substrates

结冷胶 材料科学 神经细胞 自愈水凝胶 细胞外基质 组织工程 纳米技术 神经干细胞 生物医学工程 神经组织工程 细胞 细胞生物学 化学 干细胞 生物 高分子化学 医学 生物化学 食品科学
作者
Rodrigo Lozano,Leo Stevens,Brianna C. Thompson,Kerry J. Gilmore,Robert Gorkin,Elise M. Stewart,Marc in het Panhuis,Mario Romero‐Ortega,Gordon G. Wallace
出处
期刊:Biomaterials [Elsevier BV]
卷期号:67: 264-273 被引量:404
标识
DOI:10.1016/j.biomaterials.2015.07.022
摘要

The brain is an enormously complex organ structured into various regions of layered tissue. Researchers have attempted to study the brain by modeling the architecture using two dimensional (2D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to our understanding of the functioning of the brain at the tissue or organ level. To address these obstacles, we demonstrate a new method to bioprint 3D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels. Brain-like structures were constructed using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. The neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix. The facile ability to form discrete cell-containing layers validates the application of this novel printing technique to form complex, layered and viable 3D cell structures. These brain-like structures offer the opportunity to reproduce more accurate 3D in vitro microstructures with applications ranging from cell behavior studies to improving our understanding of brain injuries and neurodegenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyz完成签到,获得积分10
刚刚
Sofia完成签到 ,获得积分0
刚刚
朴素的以珊完成签到 ,获得积分10
1秒前
朱猪侠完成签到,获得积分10
1秒前
hyperthermal1完成签到,获得积分10
1秒前
充电宝应助HHH采纳,获得10
2秒前
2秒前
不能当饭吃完成签到,获得积分10
3秒前
白桃味的夏完成签到,获得积分10
3秒前
大知闲闲完成签到 ,获得积分10
3秒前
4秒前
ZG完成签到,获得积分10
4秒前
溶脂完成签到,获得积分10
4秒前
5秒前
deniroming完成签到,获得积分10
5秒前
6秒前
xiaozhejia完成签到,获得积分10
6秒前
焦糖完成签到,获得积分10
6秒前
淡定自中完成签到 ,获得积分20
6秒前
YHX完成签到,获得积分10
7秒前
溶脂发布了新的文献求助10
7秒前
海的海完成签到 ,获得积分10
7秒前
好奇宝宝发布了新的文献求助10
8秒前
小木虫完成签到,获得积分10
8秒前
无聊的听寒完成签到 ,获得积分10
9秒前
朴素的以珊关注了科研通微信公众号
9秒前
昔时旧日完成签到,获得积分10
9秒前
大方小蘑菇完成签到,获得积分10
9秒前
10秒前
令狐冲完成签到,获得积分10
10秒前
如沐春风发布了新的文献求助10
10秒前
梦璃完成签到 ,获得积分10
10秒前
11秒前
hwl26完成签到,获得积分10
11秒前
LLLLXR完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
壮观的不评完成签到 ,获得积分10
13秒前
研友_LMNjkn完成签到 ,获得积分10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840982
求助须知:如何正确求助?哪些是违规求助? 3382969
关于积分的说明 10527271
捐赠科研通 3102843
什么是DOI,文献DOI怎么找? 1709028
邀请新用户注册赠送积分活动 822850
科研通“疑难数据库(出版商)”最低求助积分说明 773638