A Novel Approximate Spectral Clustering Algorithm With Dense Cores and Density Peaks

聚类分析 测地线 光谱聚类 算法 集合(抽象数据类型) 点(几何) 相似性(几何) 计算机科学 数学 模式识别(心理学) 人工智能 数学分析 几何学 图像(数学) 程序设计语言
作者
Dongdong Cheng,Jinlong Huang,Sulan Zhang,Xiaohua Zhang,Xin Luo
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (4): 2348-2360 被引量:44
标识
DOI:10.1109/tsmc.2021.3049490
摘要

Spectral clustering is becoming more and more popular because it has good performance in discovering clusters with varying characteristics. However, it suffers from high computational cost, unstable clustering results and noises. This work presents a novel approximate spectral clustering based on dense cores and density peaks, called DCDP-ASC. It first finds a reduced data set by introducing the concept of dense cores; then defines a new distance based on the common neighborhood of dense cores and calculates geodesic distances between dense cores according to the new defined distance; after that constructs a decision graph with a parameter-free local density and geodesic distance for obtaining initial centers; finally calculates the similarity between dense cores with their new defined geodesic distance, employs normalized spectral clustering method to divide dense cores, and expands the result on dense cores to the whole data set by assigning each point to its representative. The results on some challenging data sets and the comparison of our algorithm with some other excellent methods demonstrate that the proposed method DCDP-ASC is more advantageous in identifying complex structured clusters containing a lot of noises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luogan完成签到,获得积分10
刚刚
辛勤的捕完成签到,获得积分10
刚刚
1秒前
2秒前
代小葵发布了新的文献求助10
3秒前
852应助西红柿采纳,获得10
3秒前
4秒前
TYGao完成签到,获得积分10
5秒前
蓝桉发布了新的文献求助20
7秒前
我是老大应助代小葵采纳,获得30
9秒前
13秒前
共享精神应助乐观的颦采纳,获得10
16秒前
FashionBoy应助感性的念桃采纳,获得30
16秒前
17秒前
和谐成危发布了新的文献求助20
18秒前
许元冬发布了新的文献求助10
18秒前
18秒前
科研通AI5应助既温柔采纳,获得10
18秒前
艾希发布了新的文献求助10
22秒前
杠赛来完成签到,获得积分10
23秒前
CipherSage应助寒江雪采纳,获得10
23秒前
Lucky完成签到,获得积分10
26秒前
29秒前
29秒前
29秒前
感动书竹发布了新的文献求助20
29秒前
爆米花应助李星翰采纳,获得10
31秒前
31秒前
小马甲应助DDS采纳,获得10
31秒前
32秒前
32秒前
科研通AI5应助眼睛大发箍采纳,获得10
33秒前
寒江雪发布了新的文献求助10
35秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
liangmh应助科研通管家采纳,获得10
36秒前
在水一方应助科研通管家采纳,获得10
37秒前
orixero应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
乐乐应助科研通管家采纳,获得10
37秒前
MchemG应助科研通管家采纳,获得30
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800411
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326420
捐赠科研通 3062122
什么是DOI,文献DOI怎么找? 1680875
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572