计算机科学
计算
吞吐量
药物发现
发现学习
知识抽取
数据科学
机器学习
数据挖掘
计算科学
生物信息学
算法
数学教育
生物
无线
电信
数学
作者
Arun Mannodi‐Kanakkithodi,Maria K. Y. Chan
标识
DOI:10.1016/j.trechm.2020.12.007
摘要
Machine learning (ML) from large materials datasets enables accelerated materials discovery. Currently, the most accessible way to generate uniform, well-curated, voluminous datasets is by the application of high-throughput first principles computations. Here, we present the guiding principles of using computational data and ML to drive new materials discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI