清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identifying early gastric cancer under magnifying narrow-band images with deep learning: a multicenter study

医学 队列 接收机工作特性 预测值 诊断准确性 曲线下面积 癌症 放射科 曲线下面积 人工智能 核医学 内科学 计算机科学 药代动力学
作者
Hao Hu,Lixin Gong,Di Dong,Liang Zhu,Min Wang,Jie He,Lei Shu,Yiling Cai,Shi‐Lun Cai,Wei Su,Yunshi Zhong,Cong Li,Yongbei Zhu,Mengjie Fang,Lianzhen Zhong,Xin Yang,Ping‐Hong Zhou,Jie Tian
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:93 (6): 1333-1341.e3 被引量:73
标识
DOI:10.1016/j.gie.2020.11.014
摘要

Background and Aims Narrow-band imaging with magnifying endoscopy (ME-NBI) has shown advantages in the diagnosis of early gastric cancer (EGC). However, proficiency in diagnostic algorithms requires substantial expertise and experience. In this study, we aimed to develop a computer-aided diagnostic model for EGM (EGCM) to analyze and assist in the diagnosis of EGC under ME-NBI. Methods A total of 1777 ME-NBI images from 295 cases were collected from 3 centers. These cases were randomly divided into a training cohort (n = 170), an internal test cohort (ITC, n = 73), and an external test cohort (ETC, n = 52). EGCM based on VGG-19 architecture (Visual Geometry Group [VGG], Oxford University, Oxford, UK) with a single fully connected 2-classification layer was developed through fine-tuning and validated on all cohorts. Furthermore, we compared the model with 8 endoscopists with varying experience. Primary comparison measures included accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Results EGCM acquired AUCs of .808 in the ITC and .813 in the ETC. Moreover, EGCM achieved similar predictive performance as the senior endoscopists (accuracy: .770 vs .755, P = .355; sensitivity: .792 vs .767, P = .183; specificity: .745 vs .742, P = .931) but better than the junior endoscopists (accuracy: .770 vs .728, P < .05). After referring to the results of EGCM, the average diagnostic ability of the endoscopists was significantly improved in terms of accuracy, sensitivity, PPV, and NPV (P < .05). Conclusions EGCM exhibited comparable performance with senior endoscopists in the diagnosis of EGC and showed the potential value in aiding and improving the diagnosis of EGC by endoscopists. Narrow-band imaging with magnifying endoscopy (ME-NBI) has shown advantages in the diagnosis of early gastric cancer (EGC). However, proficiency in diagnostic algorithms requires substantial expertise and experience. In this study, we aimed to develop a computer-aided diagnostic model for EGM (EGCM) to analyze and assist in the diagnosis of EGC under ME-NBI. A total of 1777 ME-NBI images from 295 cases were collected from 3 centers. These cases were randomly divided into a training cohort (n = 170), an internal test cohort (ITC, n = 73), and an external test cohort (ETC, n = 52). EGCM based on VGG-19 architecture (Visual Geometry Group [VGG], Oxford University, Oxford, UK) with a single fully connected 2-classification layer was developed through fine-tuning and validated on all cohorts. Furthermore, we compared the model with 8 endoscopists with varying experience. Primary comparison measures included accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). EGCM acquired AUCs of .808 in the ITC and .813 in the ETC. Moreover, EGCM achieved similar predictive performance as the senior endoscopists (accuracy: .770 vs .755, P = .355; sensitivity: .792 vs .767, P = .183; specificity: .745 vs .742, P = .931) but better than the junior endoscopists (accuracy: .770 vs .728, P < .05). After referring to the results of EGCM, the average diagnostic ability of the endoscopists was significantly improved in terms of accuracy, sensitivity, PPV, and NPV (P < .05). EGCM exhibited comparable performance with senior endoscopists in the diagnosis of EGC and showed the potential value in aiding and improving the diagnosis of EGC by endoscopists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得20
44秒前
情怀应助科研通管家采纳,获得10
44秒前
阿泽完成签到,获得积分10
47秒前
末末完成签到 ,获得积分10
51秒前
Cell完成签到 ,获得积分10
59秒前
SDS完成签到 ,获得积分10
1分钟前
kmzzy完成签到,获得积分10
1分钟前
1分钟前
imemax发布了新的文献求助10
1分钟前
Eric800824完成签到 ,获得积分10
2分钟前
ylyao完成签到 ,获得积分10
3分钟前
知行者完成签到 ,获得积分10
3分钟前
sysi完成签到 ,获得积分10
3分钟前
zzhui完成签到,获得积分10
3分钟前
huanghe完成签到,获得积分10
4分钟前
ChencanFang完成签到,获得积分10
4分钟前
nojego完成签到,获得积分10
4分钟前
孙哈哈完成签到 ,获得积分10
4分钟前
FloppyWow完成签到 ,获得积分10
4分钟前
胡杨树2006完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
649981108发布了新的文献求助10
5分钟前
649981108完成签到,获得积分10
6分钟前
皮卡丘应助科研通管家采纳,获得10
6分钟前
林利芳完成签到 ,获得积分10
6分钟前
含糊的茹妖完成签到 ,获得积分0
7分钟前
小谭完成签到 ,获得积分10
7分钟前
跳跃的鹏飞完成签到 ,获得积分10
7分钟前
xiaopihaier完成签到,获得积分10
7分钟前
英喆完成签到 ,获得积分10
8分钟前
丘比特应助科研通管家采纳,获得10
8分钟前
背后友蕊完成签到 ,获得积分10
8分钟前
xdlongchem完成签到,获得积分10
8分钟前
侠客完成签到 ,获得积分10
9分钟前
9分钟前
我刷的烧饼贼亮完成签到 ,获得积分10
9分钟前
gao完成签到 ,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
中华人民共和国出版史料 4 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845577
求助须知:如何正确求助?哪些是违规求助? 3387836
关于积分的说明 10550653
捐赠科研通 3108452
什么是DOI,文献DOI怎么找? 1712830
邀请新用户注册赠送积分活动 824508
科研通“疑难数据库(出版商)”最低求助积分说明 774877