MSCS-DeepLN: Evaluating lung nodule malignancy using multi-scale cost-sensitive neural networks

过度拟合 恶性肿瘤 卷积神经网络 计算机科学 人工智能 结核(地质) 假阳性悖论 深度学习 肺癌 模式识别(心理学) 鉴定(生物学) 人工神经网络 机器学习 医学 病理 生物 植物 古生物学
作者
Xiuyuan Xu,Chengdi Wang,Jixiang Guo,Yuncui Gan,Jianyong Wang,Hongli Bai,Lei Zhang,Weimin Li,Yi Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:65: 101772-101772 被引量:95
标识
DOI:10.1016/j.media.2020.101772
摘要

The accurate identification of malignant lung nodules using computed tomography (CT) screening images is vital for the early detection of lung cancer. It also offers patients the best chance of cure, because non-invasive CT imaging has the ability to capture intra-tumoral heterogeneity. Deep learning methods have obtained promising results for the malignancy identification problem; however, two substantial challenges still remain. First, small datasets cannot insufficiently train the model and tend to overfit it. Second, category imbalance in the data is a problem. In this paper, we propose a method called MSCS-DeepLN that evaluates lung nodule malignancy and simultaneously solves these two problems. Three light models are trained and combined to evaluate the malignancy of a lung nodule. Three-dimensional convolutional neural networks (CNNs) are employed as the backbone of each light model to extract the lung nodule features from CT images and preserve lung nodule spatial heterogeneity. Multi-scale input cropped from CT images enables the sub-networks to learn the multi-level contextual features and preserve diverse. To tackle the imbalance problem, our proposed method employs an AUC approximation as the penalty term. During training, the error in this penalty term is generated from each major and minor class pair, so that negatives and positives can contribute equally to updating this model. Based on these methods, we obtain state-of-the-art results on the LIDC-IDRI dataset. Furthermore, we constructed a new dataset collected from a grade-A tertiary hospital and annotated using biopsy-based cytological analysis to verify the performance of our method in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到,获得积分10
刚刚
狒狒爱学习完成签到,获得积分10
1秒前
许愿完成签到 ,获得积分10
1秒前
Lucky完成签到 ,获得积分10
1秒前
科研通AI5应助zcy采纳,获得10
1秒前
笨笨的之柔完成签到,获得积分10
1秒前
2秒前
调皮黑猫完成签到,获得积分10
2秒前
月光族发布了新的文献求助10
3秒前
英姑应助和花花采纳,获得10
3秒前
jane完成签到,获得积分10
4秒前
研友_5Z4ZA5完成签到,获得积分10
5秒前
小惠惠完成签到,获得积分20
5秒前
5秒前
科研通AI5应助单hx采纳,获得10
7秒前
7秒前
医路有你发布了新的文献求助10
8秒前
8秒前
ding应助吕万鹏采纳,获得10
8秒前
chenjiaye发布了新的文献求助30
9秒前
爱睡午觉完成签到,获得积分10
9秒前
乃士完成签到,获得积分10
9秒前
youyu完成签到,获得积分10
9秒前
哈哈哈发布了新的文献求助10
9秒前
汉堡包应助李志敏采纳,获得10
10秒前
10秒前
调皮的西装完成签到,获得积分10
10秒前
qingqing168完成签到,获得积分10
11秒前
12秒前
liangmh发布了新的文献求助10
12秒前
12秒前
12秒前
科研通AI5应助Susan采纳,获得10
13秒前
momo发布了新的文献求助10
13秒前
torch132完成签到,获得积分10
14秒前
Lucas应助科研通管家采纳,获得10
15秒前
wy.he应助科研通管家采纳,获得30
15秒前
领导范儿应助科研通管家采纳,获得30
15秒前
Owen应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798681
求助须知:如何正确求助?哪些是违规求助? 3344293
关于积分的说明 10319638
捐赠科研通 3060893
什么是DOI,文献DOI怎么找? 1679853
邀请新用户注册赠送积分活动 806780
科研通“疑难数据库(出版商)”最低求助积分说明 763386