比例(比率)
计算生物学
基因组
产品(数学)
生物
遗传学
基因
物理
数学
量子力学
几何学
作者
Deepanwita Banerjee,Thomas Eng,Andrew K. Lau,Yusuke Sasaki,Brenda Wang,Yan Chen,Jan‐Philip Prahl,Vasanth Singan,Robin A. Herbert,Yuzhong Liu,Deepti Tanjore,Christopher J. Petzold,Jay D. Keasling,Aindrila Mukhopadhyay
标识
DOI:10.1038/s41467-020-19171-4
摘要
High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).
科研通智能强力驱动
Strongly Powered by AbleSci AI