Variable dimensional structure and interface design of g-C3N4/BiOI composites with oxygen vacancy for improving visible-light photocatalytic properties

光催化 异质结 材料科学 氧化剂 罗丹明B 可见光谱 带隙 催化作用 介孔材料 化学工程 复合材料 纳米技术 光电子学 化学 有机化学 工程类
作者
Jianhua Hou,Ting Jiang,Xiaozhi Wang,Geshan Zhang,Ji‐Jun Zou,Chuanbao Cao
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:287: 125072-125072 被引量:162
标识
DOI:10.1016/j.jclepro.2020.125072
摘要

It is still challenging to adjust the desired structure and heterojunction interface of photocatalytic materials by a facile and efficient strategy. In this manuscript, variable dimensional structured BiOI with surface oxygen vacancies (OVs) were prepared via an in-situ growth on mesoporous g-C3N4 nanosheets through one-pot synthesis at room temperature, which possesses the p-n heterojunction required for the high-performance photocatalysis. By reducing the amount of the precursor of BiOI during the reaction, the morphology of BiOI gradually changed from 3D microspheres to 2D nanosheets and even 0D nanoparticles, which were conjugated with ultrathin g-C3N4 nanosheets forming the composites with 2D/3D, 2D/2D, and 2D/0D structure, respectively. The catalyst with the best performance was determined to be the g-C3N4/BiOI with 2D/2D structure, which provides a larger contact surface, appropriate bandgap, and the higher utilization of visible light. The synergies between heterostructure and OVs can promote both the production and the separation of electron-hole effectively, and hence producing more oxidizing •O2− and h+ with the energy input. Thereby, under visible light, the optimized combination of g-C3N4/BiOI heterojunction can exhibit the outstanding photocatalytic performance of degrading 99% rhodamine B within 2 h, which was 2.6 and 12.8 times faster than pure g-C3N4 and pure BiOI, respectively. In addition, our work provides a feasible and adjustable approach to regulate the structure and heterojunction interface of photocatalysts as well as the discussion about the variable dimensional structure-activity relationship in photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助wxj采纳,获得10
刚刚
哒哒李完成签到,获得积分10
1秒前
Alice发布了新的文献求助10
4秒前
4秒前
5秒前
十一完成签到,获得积分10
6秒前
迅速的香露完成签到,获得积分10
9秒前
墨守成规完成签到,获得积分10
9秒前
今后应助执笔曦倾年采纳,获得10
9秒前
沉静大有发布了新的文献求助10
9秒前
黑暗与黎明完成签到 ,获得积分10
9秒前
lly完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
李俊杰完成签到 ,获得积分10
11秒前
TTDD完成签到 ,获得积分10
13秒前
13秒前
hamalaoda完成签到,获得积分10
14秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
14秒前
墨守成规发布了新的文献求助10
14秒前
Ferry发布了新的文献求助10
15秒前
qwer发布了新的文献求助10
15秒前
16秒前
叶子完成签到,获得积分10
16秒前
犹豫小凝发布了新的文献求助10
17秒前
微7完成签到,获得积分10
17秒前
17秒前
Alice完成签到,获得积分20
17秒前
L1q完成签到,获得积分10
19秒前
lmd完成签到,获得积分10
19秒前
Apple发布了新的文献求助30
19秒前
尤野发布了新的文献求助10
20秒前
21秒前
22秒前
幸福大白发布了新的文献求助10
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
科研通AI6应助璨澄采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4692717
求助须知:如何正确求助?哪些是违规求助? 4063870
关于积分的说明 12565339
捐赠科研通 3762109
什么是DOI,文献DOI怎么找? 2077843
邀请新用户注册赠送积分活动 1106165
科研通“疑难数据库(出版商)”最低求助积分说明 984629