Machine and deep learning methods for radiomics

无线电技术 人工智能 计算机科学 深度学习 机器学习 医学影像学 标准化 数据科学 精密医学 转化研究 大数据 医学物理学 医学 数据挖掘 病理 操作系统
作者
Michele Avanzo,Lise Wei,Joseph Stancanello,Martin Vallières,Arvind Rao,Olivier Morin,Sarah A. Mattonen,Issam El Naqa
出处
期刊:Medical Physics [Wiley]
卷期号:47 (5) 被引量:455
标识
DOI:10.1002/mp.13678
摘要

Radiomics is an emerging area in quantitative image analysis that aims to relate large‐scale extracted imaging information to clinical and biological endpoints. The development of quantitative imaging methods along with machine learning has enabled the opportunity to move data science research towards translation for more personalized cancer treatments. Accumulating evidence has indeed demonstrated that noninvasive advanced imaging analytics, that is, radiomics, can reveal key components of tumor phenotype for multiple three‐dimensional lesions at multiple time points over and beyond the course of treatment. These developments in the use of CT, PET, US, and MR imaging could augment patient stratification and prognostication buttressing emerging targeted therapeutic approaches. In recent years, deep learning architectures have demonstrated their tremendous potential for image segmentation, reconstruction, recognition, and classification. Many powerful open‐source and commercial platforms are currently available to embark in new research areas of radiomics. Quantitative imaging research, however, is complex and key statistical principles should be followed to realize its full potential. The field of radiomics, in particular, requires a renewed focus on optimal study design/reporting practices and standardization of image acquisition, feature calculation, and rigorous statistical analysis for the field to move forward. In this article, the role of machine and deep learning as a major computational vehicle for advanced model building of radiomics‐based signatures or classifiers, and diverse clinical applications, working principles, research opportunities, and available computational platforms for radiomics will be reviewed with examples drawn primarily from oncology. We also address issues related to common applications in medical physics, such as standardization, feature extraction, model building, and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅特卡夫完成签到,获得积分10
2秒前
初见完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
忧虑的静柏完成签到 ,获得积分10
13秒前
drughunter009完成签到 ,获得积分10
14秒前
芙瑞完成签到 ,获得积分10
16秒前
dajiejie完成签到 ,获得积分10
16秒前
Jzhaoc580完成签到 ,获得积分10
18秒前
今后应助搞怪元彤采纳,获得10
19秒前
热心的冬菱完成签到 ,获得积分10
20秒前
linhuafeng完成签到,获得积分10
21秒前
闫栋完成签到 ,获得积分10
22秒前
aaatan完成签到 ,获得积分10
23秒前
Raymond完成签到,获得积分10
24秒前
byron完成签到 ,获得积分10
24秒前
Wwww完成签到 ,获得积分10
26秒前
言庭兰玉完成签到,获得积分10
26秒前
26秒前
盛夏蔚来完成签到 ,获得积分10
26秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
狂野元枫完成签到 ,获得积分10
27秒前
苗条幻巧完成签到 ,获得积分20
30秒前
搞怪元彤发布了新的文献求助10
32秒前
争气完成签到 ,获得积分10
33秒前
zeannezg完成签到 ,获得积分10
34秒前
舒适的天奇完成签到 ,获得积分10
34秒前
陈咪咪完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助50
40秒前
生动又夏完成签到,获得积分10
41秒前
曲奇吐司完成签到,获得积分10
41秒前
43秒前
子舆完成签到 ,获得积分10
43秒前
开心的若烟完成签到,获得积分10
44秒前
44秒前
清脆圆子完成签到 ,获得积分10
46秒前
苏格拉底的嘲笑完成签到,获得积分10
46秒前
TYH完成签到 ,获得积分10
46秒前
48秒前
白桃乌龙完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813