Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis

计算机科学 深度学习 噪音(视频) 人工智能 机器学习 领域(数学分析) 医学影像学 图像(数学) 数据科学 数学 数学分析
作者
Davood Karimi,Haoran Dou,Simon K. Warfield,Ali Gholipour
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:65: 101759-101759 被引量:536
标识
DOI:10.1016/j.media.2020.101759
摘要

Supervised training of deep learning models requires large labeled datasets. There is a growing interest in obtaining such datasets for medical image analysis applications. However, the impact of label noise has not received sufficient attention. Recent studies have shown that label noise can significantly impact the performance of deep learning models in many machine learning and computer vision applications. This is especially concerning for medical applications, where datasets are typically small, labeling requires domain expertise and suffers from high inter- and intra-observer variability, and erroneous predictions may influence decisions that directly impact human health. In this paper, we first review the state-of-the-art in handling label noise in deep learning. Then, we review studies that have dealt with label noise in deep learning for medical image analysis. Our review shows that recent progress on handling label noise in deep learning has gone largely unnoticed by the medical image analysis community. To help achieve a better understanding of the extent of the problem and its potential remedies, we conducted experiments with three medical imaging datasets with different types of label noise, where we investigated several existing strategies and developed new methods to combat the negative effect of label noise. Based on the results of these experiments and our review of the literature, we have made recommendations on methods that can be used to alleviate the effects of different types of label noise on deep models trained for medical image analysis. We hope that this article helps the medical image analysis researchers and developers in choosing and devising new techniques that effectively handle label noise in deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着冬灵关注了科研通微信公众号
刚刚
2秒前
3秒前
Hello应助西北望采纳,获得10
4秒前
情怀应助玉龙爬雪山采纳,获得10
5秒前
7秒前
水煮南瓜头完成签到,获得积分10
7秒前
LFY完成签到 ,获得积分10
8秒前
8秒前
欣欣完成签到,获得积分10
8秒前
柯一一应助干净溪流采纳,获得10
11秒前
Yang发布了新的文献求助200
12秒前
欣欣发布了新的文献求助10
12秒前
小瓶完成签到,获得积分10
12秒前
14秒前
乘风的法袍完成签到,获得积分10
14秒前
充电宝应助勤恳的宛菡采纳,获得10
15秒前
SYLH应助lly采纳,获得10
16秒前
研友_VZG7GZ应助小瓶采纳,获得10
17秒前
19秒前
西北望发布了新的文献求助10
19秒前
20秒前
21秒前
安宥真发布了新的文献求助10
23秒前
23秒前
U9A发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
26秒前
西北望完成签到,获得积分20
26秒前
陈秋发布了新的文献求助10
27秒前
xyc发布了新的文献求助10
29秒前
xr发布了新的文献求助10
31秒前
31秒前
Jack发布了新的文献求助10
31秒前
34秒前
柯一一应助Steven采纳,获得10
35秒前
青青发布了新的文献求助10
35秒前
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965174
求助须知:如何正确求助?哪些是违规求助? 3510528
关于积分的说明 11153741
捐赠科研通 3244822
什么是DOI,文献DOI怎么找? 1792646
邀请新用户注册赠送积分活动 873928
科研通“疑难数据库(出版商)”最低求助积分说明 804081