亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constrained EV Charging Scheduling Based on Safe Deep Reinforcement Learning

强化学习 马尔可夫决策过程 随机性 计算机科学 调度(生产过程) 电动汽车 经济调度 数学优化 马尔可夫过程 人工智能 工程类 功率(物理) 电力系统 电气工程 统计 量子力学 物理 数学
作者
Hepeng Li,Zhiqiang Wan,Haibo He
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 2427-2439 被引量:307
标识
DOI:10.1109/tsg.2019.2955437
摘要

Electric vehicles (EVs) have been popularly adopted and deployed over the past few years because they are environment-friendly. When integrated into smart grids, EVs can operate as flexible loads or energy storage devices to participate in demand response (DR). By taking advantage of time-varying electricity prices in DR, the charging cost can be reduced by optimizing the charging/discharging schedules. However, since there exists randomness in the arrival and departure time of an EV and the electricity price, it is difficult to determine the optimal charging/discharging schedules to guarantee that the EV is fully charged upon departure. To address this issue, we formulate the EV charging/discharging scheduling problem as a constrained Markov Decision Process (CMDP). The aim is to find a constrained charging/discharging scheduling strategy to minimize the charging cost as well as guarantee the EV can be fully charged. To solve the CMDP, a model-free approach based on safe deep reinforcement learning (SDRL) is proposed. The proposed approach does not require any domain knowledge about the randomness. It directly learns to generate the constrained optimal charging/discharging schedules with a deep neural network (DNN). Unlike existing reinforcement learning (RL) or deep RL (DRL) paradigms, the proposed approach does not need to manually design a penalty term or tune a penalty coefficient. Numerical experiments with real-world electricity prices demonstrate the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo完成签到 ,获得积分10
8秒前
zqq完成签到,获得积分0
11秒前
14秒前
32秒前
鲁丁丁完成签到 ,获得积分10
37秒前
绫艾完成签到,获得积分10
55秒前
站在巨人的肩膀上完成签到,获得积分10
1分钟前
1分钟前
Ava应助科研通管家采纳,获得30
1分钟前
Shego完成签到,获得积分10
1分钟前
云母完成签到 ,获得积分10
1分钟前
星辰大海应助动听文轩采纳,获得10
1分钟前
轻松小张完成签到,获得积分10
2分钟前
Lee发布了新的文献求助10
2分钟前
六六完成签到 ,获得积分10
2分钟前
2分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
大个应助科研通管家采纳,获得30
3分钟前
3分钟前
ppppppp_76完成签到 ,获得积分10
3分钟前
3分钟前
yofluenza发布了新的文献求助10
3分钟前
章鱼完成签到,获得积分10
3分钟前
3分钟前
Cheng发布了新的文献求助10
3分钟前
vrellik发布了新的文献求助10
3分钟前
3分钟前
3分钟前
孙燕给咸金城的求助进行了留言
4分钟前
六碗鱼完成签到 ,获得积分10
4分钟前
子凡完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
李健应助科研通管家采纳,获得30
5分钟前
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
嬷嬷完成签到,获得积分10
5分钟前
5分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833743
求助须知:如何正确求助?哪些是违规求助? 3376192
关于积分的说明 10492292
捐赠科研通 3095778
什么是DOI,文献DOI怎么找? 1704713
邀请新用户注册赠送积分活动 820077
科研通“疑难数据库(出版商)”最低求助积分说明 771799