已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Path-based reasoning approach for knowledge graph completion using CNN-BiLSTM with attention mechanism

计算机科学 嵌入 人工智能 路径(计算) 关系(数据库) 理论计算机科学 推论 代表(政治) 图形 卷积神经网络 图嵌入 知识表示与推理 数据挖掘 政治 政治学 法学 程序设计语言
作者
Batselem Jagvaral,Wan-Kon Lee,Jae-Seung Roh,Min‐Sung Kim,Young-Tack Park
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:142: 112960-112960 被引量:51
标识
DOI:10.1016/j.eswa.2019.112960
摘要

Knowledge graphs are valuable resources for building intelligent systems such as question answering or recommendation systems. However, most knowledge graphs are impaired by missing relationships between entities. Embedding methods that translate entities and relations into a low-dimensional space achieve great results, but they only focus on the direct relations between entities and neglect the presence of path relations in graphs. On the contrary, path-based embedding methods consider a single path to make inferences. It also relies on simple recurrent neural networks while highly efficient neural network models are available for processing sequence data. We propose a new approach for knowledge graph completion that combines bidirectional long short-term memory (BiLSTM) and convolutional neural network modules with an attention mechanism. Given a candidate relation and two entities, we encode paths that connect the entities into a low-dimensional space using a convolutional operation followed by BiLSTM. Then, an attention layer is applied to capture the semantic correlation between a candidate relation and each path between two entities and attentively extract reasoning evidence from the representation of multiple paths to predict whether the entities should be connected by the candidate relation. We extend our model to perform multistep reasoning over path representations in an embedding space. A recurrent neural network is designed to repeatedly interact with an attention module to derive logical inference from the representation of multiple paths. We perform link prediction tasks on several knowledge graphs and show that our method achieves better performance compared with recent state-of-the-art path-reasoning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯寜完成签到,获得积分0
1秒前
Ethan完成签到 ,获得积分0
2秒前
小丸子完成签到,获得积分10
3秒前
Xiaque发布了新的文献求助10
3秒前
yyshhcyuwhegy完成签到 ,获得积分10
7秒前
清新的寄风完成签到 ,获得积分10
8秒前
尹静涵完成签到 ,获得积分10
8秒前
Yaon-Xu完成签到,获得积分10
9秒前
Wong Ka Kui完成签到,获得积分10
10秒前
10秒前
ryanfeng完成签到,获得积分0
10秒前
鲁路修完成签到,获得积分10
12秒前
13秒前
15秒前
zstyry9998发布了新的文献求助10
17秒前
我是125完成签到,获得积分10
17秒前
車侖发布了新的文献求助200
17秒前
ch发布了新的文献求助10
18秒前
01259完成签到 ,获得积分10
19秒前
读研霹雳发布了新的文献求助10
21秒前
zstyry9998完成签到,获得积分10
24秒前
我好想睡完成签到,获得积分10
24秒前
HYQ完成签到 ,获得积分10
25秒前
耍酷鼠标完成签到 ,获得积分0
25秒前
总攻大人发布了新的文献求助20
25秒前
26秒前
AZN完成签到 ,获得积分10
30秒前
苏鱼完成签到 ,获得积分10
35秒前
嘉1612完成签到 ,获得积分10
37秒前
38秒前
nnnnnnnn完成签到,获得积分10
39秒前
读研霹雳完成签到,获得积分10
41秒前
randi发布了新的文献求助20
42秒前
拾光完成签到,获得积分10
43秒前
在水一方应助踏实枕头采纳,获得10
44秒前
程小柒完成签到 ,获得积分10
44秒前
46秒前
47秒前
岳小龙完成签到 ,获得积分10
47秒前
行走人生完成签到,获得积分10
48秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830329
求助须知:如何正确求助?哪些是违规求助? 3372734
关于积分的说明 10474907
捐赠科研通 3092457
什么是DOI,文献DOI怎么找? 1702090
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087