Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials

医学 内科学 肿瘤科 结直肠癌 人口 临床试验 腺癌 癌症 无进展生存期 化疗 环境卫生
作者
Alexander Schperberg,Amélie Boichard,Igor F. Tsigelny,Stéphane Richard,Razelle Kurzrock
出处
期刊:International Journal of Cancer [Wiley]
卷期号:147 (9): 2537-2549 被引量:10
标识
DOI:10.1002/ijc.33240
摘要

Abstract Predicting oncologic outcome is challenging due to the diversity of cancer histologies and the complex network of underlying biological factors. In this study, we determine whether machine learning (ML) can extract meaningful associations between oncologic outcome and clinical trial, drug‐related biomarker and molecular profile information. We analyzed therapeutic clinical trials corresponding to 1102 oncologic outcomes from 104 758 cancer patients with advanced colorectal adenocarcinoma, pancreatic adenocarcinoma, melanoma and nonsmall‐cell lung cancer. For each intervention arm, a dataset with the following attributes was curated: line of treatment, the number of cytotoxic chemotherapies, small‐molecule inhibitors, or monoclonal antibody agents, drug class, molecular alteration status of the clinical arm's population, cancer type, probability of drug sensitivity (PDS) (integrating the status of genomic, transcriptomic and proteomic biomarkers in the population of interest) and outcome. A total of 467 progression‐free survival (PFS) and 369 overall survival (OS) data points were used as training sets to build our ML (random forest) model. Cross‐validation sets were used for PFS and OS, obtaining correlation coefficients ( r ) of 0.82 and 0.70, respectively (outcome vs model's parameters). A total of 156 PFS and 110 OS data points were used as test sets. The Spearman correlation ( r s ) between predicted and actual outcomes was statistically significant (PFS: r s = 0.879, OS: r s = 0.878, P < .0001). The better outcome arm was predicted in 81% (PFS: N = 59/73, z = 5.24, P < .0001) and 71% (OS: N = 37/52, z = 2.91, P = .004) of randomized trials. The success of our algorithm to predict clinical outcome may be exploitable as a model to optimize clinical trial design with pharmaceutical agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysw完成签到,获得积分10
刚刚
小青椒应助郭嘉采纳,获得20
1秒前
李彤阳完成签到,获得积分10
1秒前
2秒前
3秒前
aaa发布了新的文献求助10
3秒前
4秒前
搞怪书兰完成签到,获得积分10
5秒前
南霖完成签到,获得积分10
5秒前
ZHANG发布了新的文献求助20
7秒前
酷波er应助daring采纳,获得10
8秒前
childe发布了新的文献求助10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
赫若魔应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
艳艳宝完成签到 ,获得积分10
10秒前
上官若男应助读行千万采纳,获得10
10秒前
落水鎏情完成签到,获得积分10
15秒前
玛莎机发布了新的文献求助10
15秒前
KD发布了新的文献求助10
15秒前
丘比特应助blackcatcaptain采纳,获得10
19秒前
文静乐松完成签到 ,获得积分10
21秒前
ZHANG完成签到,获得积分10
22秒前
CYF发布了新的文献求助10
22秒前
24秒前
26秒前
天青色等烟雨完成签到 ,获得积分10
27秒前
宋叻叻发布了新的文献求助10
28秒前
科研通AI5应助KD采纳,获得10
29秒前
29秒前
CodeCraft应助Blank采纳,获得10
30秒前
30秒前
ff完成签到,获得积分10
31秒前
33秒前
杰456发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819009
求助须知:如何正确求助?哪些是违规求助? 4128180
关于积分的说明 12775707
捐赠科研通 3867621
什么是DOI,文献DOI怎么找? 2128291
邀请新用户注册赠送积分活动 1149097
关于科研通互助平台的介绍 1044720