亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based classification of lower extremity arterial stenosis in computed tomography angiography

医学 狭窄 放射科 计算机断层血管造影 计算机断层摄影术 血管造影 断层摄影术
作者
Lisong Dai,Quan Zhou,Hongmei Zhou,Huijuan Zhang,Panpan Cheng,Mingyue Ding,Xiangyang Xu,Xuming Zhang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:136: 109528-109528 被引量:33
标识
DOI:10.1016/j.ejrad.2021.109528
摘要

Abstract

Purpose

The purpose of this study is to develop and evaluate a deep learning model to assist radiologists in classifying lower extremity arteries based on the degree of arterial stenosis caused by plaque in lower extremity computed tomography angiography (CTA) of patients with peripheral artery disease.

Methods

In this retrospective study, 265 patients who underwent lower-extremity CTA between January 1, 2016 and October 31, 2019 were selected. A total of 17050 axial images of iliac, femoropopliteal and infrapopliteal artery from these patients were used for the training and validation of the parallel efficient network (p-EffNet), a kind of supervised convolutional neural network, to classify the lower-extremity artery segments according to the degree of stenosis with digital subtraction angiography as reference standard. The classification results of the p-EffNet were then compared with those obtained from radiologists. Receiver operating characteristic curve (ROC) was used to evaluate the performance of the p-EffNet and accuracy, specificity, sensitivity and area under the curve (AUC) were used as measure metrics to compare the performance of the p-EffNet and that of radiologists.

Results

The p-EffNet exhibited a good performance of 91.5 % accuracy, 0.987 AUC and 90.2 % sensitivity and 97.7 % specificity in classifying above-knee artery and 90.9 % accuracy, 0.981 AUC, 91.3 % sensitivity and 95.2 % specificity in classifying below-knee artery. When compared with human readers, for both above-knee and below-knee artery, the p-EffNet had comparable accuracy (p = 0.266 and p = 0.808, respectively) and specificity (p = 0.118 and p = 0.971, respectively) but lower sensitivity (p < 0.001 and p = 0.022, respectively).

Conclusions

The p-EffNet demonstrates promising diagnostic performance and has the potential to reduce the workload of radiologists and help to find the plaques that might otherwise have been missed or misjudged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxh完成签到,获得积分10
4秒前
4秒前
世良发布了新的文献求助10
7秒前
pegasus0802完成签到,获得积分10
9秒前
11秒前
xixiazhiwang完成签到 ,获得积分10
11秒前
SciGPT应助世良采纳,获得10
12秒前
16秒前
VV2001发布了新的文献求助10
17秒前
科研通AI6应助体贴花卷采纳,获得10
20秒前
企鹅发布了新的文献求助10
21秒前
22秒前
23秒前
zly完成签到 ,获得积分0
35秒前
完美世界应助沉静丹寒采纳,获得30
35秒前
37秒前
ramsey33完成签到 ,获得积分10
41秒前
世良发布了新的文献求助10
42秒前
ceeray23应助科研通管家采纳,获得10
54秒前
归尘应助科研通管家采纳,获得10
54秒前
归尘应助科研通管家采纳,获得10
54秒前
归尘应助科研通管家采纳,获得10
54秒前
ding应助科研通管家采纳,获得10
54秒前
ceeray23应助科研通管家采纳,获得10
54秒前
1分钟前
CipherSage应助企鹅采纳,获得10
1分钟前
沉静丹寒发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
大大鱼发布了新的文献求助10
1分钟前
JamesPei应助世良采纳,获得10
1分钟前
1分钟前
Hou完成签到,获得积分20
1分钟前
MchemG完成签到,获得积分0
1分钟前
1分钟前
Hou发布了新的文献求助10
1分钟前
CodeCraft应助光亮的天真采纳,获得10
1分钟前
笑点低的斑马完成签到,获得积分10
1分钟前
NexusExplorer应助fsz采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650780
求助须知:如何正确求助?哪些是违规求助? 4781689
关于积分的说明 15052597
捐赠科研通 4809594
什么是DOI,文献DOI怎么找? 2572392
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373