Auto-Metric Graph Neural Network Based on a Meta-Learning Strategy for the Diagnosis of Alzheimer's Disease

计算机科学 人工智能 机器学习 公制(单位) 图形 人工神经网络 保险丝(电气) 节点(物理) 模式识别(心理学) 理论计算机科学 运营管理 结构工程 电气工程 工程类 经济
作者
Xiaofan Song,Mingyi Mao,Xiaohua Qian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 3141-3152 被引量:75
标识
DOI:10.1109/jbhi.2021.3053568
摘要

Alzheimer's disease (AD) is the most common cognitive disorder. In recent years, many computer-aided diagnosis techniques have been proposed for AD diagnosis and progression predictions. Among them, graph neural networks (GNNs) have received extensive attention owing to their ability to effectively fuse multimodal features and model the correlation between samples. However, many GNNs for node classification use an entire dataset to construct a large fixed-graph structure, which cannot be used for independent testing. To overcome this limitation while maintaining the advantages of the GNN, we propose an auto-metric GNN (AMGNN) model for AD diagnosis. First, a metric-based meta-learning strategy is introduced to realize inductive learning for independent testing through multiple node classification tasks. In the meta-tasks, the small graphs help make the model insensitive to the sample size, thus improving the performance under small sample size conditions. Furthermore, an AMGNN layer with a probability constraint is designed to realize node similarity metric learning and effectively fuse multimodal data. We verified the model on two tasks based on the TADPOLE dataset: early AD diagnosis and mild cognitive impairment (MCI) conversion prediction. Our model provides excellent performance on both tasks with accuracies of 94.44% and 87.50% and median accuracies of 94.19% and 86.25%, respectively. These results show that our model improves flexibility while ensuring a good classification performance, thus promoting the development of graph-based deep learning algorithms for disease diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaomiao完成签到,获得积分10
刚刚
刚刚
刚刚
方超完成签到,获得积分10
刚刚
tangyuan完成签到,获得积分10
1秒前
nv42r8完成签到,获得积分10
1秒前
peng发布了新的文献求助10
1秒前
CipherSage应助火星上送终采纳,获得10
1秒前
xhlbl发布了新的文献求助10
1秒前
fashion完成签到 ,获得积分10
1秒前
何仙姑发布了新的文献求助30
1秒前
2秒前
2秒前
沉默安蕾完成签到,获得积分10
2秒前
熊俊龙完成签到,获得积分10
2秒前
风火行天发布了新的文献求助10
2秒前
吴军霄完成签到,获得积分10
2秒前
瀛洲晚风完成签到,获得积分10
3秒前
汤飞柏发布了新的文献求助10
3秒前
韦尹洁发布了新的文献求助30
3秒前
whh完成签到,获得积分10
3秒前
3秒前
勤奋的抽屉完成签到,获得积分10
4秒前
共享精神应助气敏侠采纳,获得10
5秒前
5秒前
5秒前
顺心冰岚发布了新的文献求助10
6秒前
6秒前
CipherSage应助庄里憨笑采纳,获得10
6秒前
青黛发布了新的文献求助10
7秒前
情怀应助顺心的筮采纳,获得10
7秒前
8秒前
TingWan发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
火星上送终完成签到,获得积分10
9秒前
10秒前
丘比特应助zzl采纳,获得10
10秒前
安静的缘分完成签到,获得积分10
10秒前
田様应助跳跃的明雪采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839