Chemical-protein Interaction Extraction via ChemicalBERT and Attention Guided Graph Convolutional Networks in Parallel

计算机科学 Softmax函数 判决 图形 人工智能 自然语言处理 关系抽取 信息抽取 深度学习 理论计算机科学
作者
Lei Qin,Gaocai Dong,Jing Peng
标识
DOI:10.1109/bibm49941.2020.9313234
摘要

Automated recognition of functional interactions between compounds and proteins/genes from biomedical literature is essential for drug discovery, knowledge understanding, and basic clinical research. Although several computational methods have achieved competitive performances in extracting these relations, there is significant room for improvement in fully capturing complex semantic and syntactic information within sentences. We herein present a novel parallel model to improve chemical-protein interaction (CPI) extraction. Specifically, the model consists of ChemicalBERT and Attention Guided Graph Convolutional Networks (AGGCN) two parallel components. We pre-train BERT on large-scale chemical interaction corpora and re-define it as ChemicalBERT to generate high-quality contextual representation, and employ AGGCN to capture syntactic graph information of the sentence. Finally, the contextual representation and syntactic graph representation are merged into a fusion layer and then fed into the fully-connected softmax layer to extract CPIs. We evaluate our proposed model on the ChemProt corpus, which is the benchmark corpus of this domain. We achieve state-of-the-art results for the CPI extraction with a micro-averaged F1-score of 80.21%. To further demonstrate the efficacy of the proposed model, we have also conducted experiments on the DDIExtraction 2013 corpus and obtained a micro-averaged F1-score of 82.88%, which is also the highest score compared to the existing models. Experimental results show that our proposed model can adequately capture semantic and syntactic information by parallelly extracting sentence features from different views. The code is available at https://github.com/ql-bio/CPR extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不懂白发布了新的文献求助10
1秒前
fzhou完成签到 ,获得积分10
1秒前
由富发布了新的文献求助10
1秒前
1秒前
1秒前
依梦完成签到,获得积分10
2秒前
gaoww发布了新的文献求助10
4秒前
4秒前
英俊的铭应助平淡惋清采纳,获得10
4秒前
魏新某完成签到,获得积分10
5秒前
wzxx完成签到 ,获得积分10
5秒前
科研通AI5应助曼陀山庄采纳,获得10
6秒前
迷路访旋发布了新的文献求助20
6秒前
影子芳香完成签到 ,获得积分10
6秒前
cmh完成签到,获得积分10
7秒前
英俊的铭应助cj采纳,获得10
7秒前
7秒前
8秒前
seattle完成签到,获得积分10
8秒前
领导范儿应助虚心的寻双采纳,获得10
8秒前
9秒前
蒿标标完成签到,获得积分10
9秒前
9秒前
yzx完成签到,获得积分20
9秒前
轻松发布了新的文献求助10
10秒前
10秒前
10秒前
星辰大海应助愉快山菡采纳,获得10
11秒前
jenningseastera应助冷静尔云采纳,获得10
12秒前
yzx发布了新的文献求助10
12秒前
13秒前
丘比特应助超级白昼采纳,获得10
13秒前
赶紧毕业完成签到,获得积分10
14秒前
yc发布了新的文献求助10
14秒前
映城应助淡然白安采纳,获得30
14秒前
Ace发布了新的文献求助10
14秒前
14秒前
天天天蓝完成签到,获得积分10
15秒前
领导范儿应助kash想毕业采纳,获得10
15秒前
111发布了新的文献求助30
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789164
求助须知:如何正确求助?哪些是违规求助? 3334289
关于积分的说明 10268778
捐赠科研通 3050705
什么是DOI,文献DOI怎么找? 1674102
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760657