Toward Transition Modeling in a Hypersonic Boundary Layer at Flight Conditions

高超音速 自由流 马赫数 边界层 雷诺数 航空航天工程 计算流体力学 物理 机械 攻角 高超音速飞行 空气动力学 几何学 控制理论(社会学) 计算机科学 数学 湍流 工程类 人工智能 控制(管理)
作者
Pedro Paredes,Balaji Shankar Venkatachari,Meelan M. Choudhari,Fei Li,Chau‐Lyan Chang,Muhammad I. Irfan,Heng Xiao
标识
DOI:10.2514/6.2020-0103
摘要

An accurate physics-based transition prediction method integrated with computational fluid dynamics (CFD) solvers is pursued for hypersonic boundary layer flows over slender hypersonic vehicles at flight conditions. The geometry and flow conditions are selected to match relevant trajectory locations from the ascent phase of the HIFiRE-1 flight experiment, namely, a 7-degree half-angle cone with 2.5 mm nose radius, freestream Mach numbers in the range of 3.8-5.5 and freestream unit Reynolds numbers in the range of 3.3E6-21.4E6 1/m. Earlier research had shown that the onset of transition during the HIFiRE-1 flight experiment correlated with an amplification factor of N~13.5 for the planar Mack modes. However, to incorporate the N-factor correlations into a CFD code, we investigate surrogate models for disturbance amplification that avoid the direct computation of stability characteristics. A commonly used approach for low-speed flows is based on an a priori database of stability characteristics for locally similar profiles. However, the results presented in this paper demonstrate that the application of this approach to hypersonic boundary layers over blunt spherical nose-tip cones leads to large, unacceptable errors in the predictions of amplification factors, mainly due to its failure in accounting for the effects of the entropy layer on the boundary-layer profiles along the length of the model. We propose and demonstrate an alternate approach that employs the stability computations for a canonical set of blunt cone configurations to train a physics-informed convolutional neural network model that is shown to provide substantially improved transition predictions for hypersonic flow configurations with entropy-layer effects. Furthermore, the excellent performance of the neural network model is also confirmed for cone configurations with nose radius and half-angle values that do not correspond to those used to build the database. Finally, the convolutional neural network model is shown to outperform the linear stability calculations for underresolved basic states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao应助Min采纳,获得10
1秒前
xiaowang应助清新的音响采纳,获得10
2秒前
liboshi完成签到,获得积分10
3秒前
顺鑫完成签到 ,获得积分10
7秒前
科研通AI5应助kelly采纳,获得10
12秒前
yyyyyyyyjt完成签到,获得积分10
12秒前
13秒前
科研通AI5应助LULU采纳,获得10
14秒前
nothing发布了新的文献求助10
16秒前
17秒前
17秒前
豪哥发布了新的文献求助10
18秒前
Shandongdaxiu发布了新的文献求助10
20秒前
小张发布了新的文献求助10
21秒前
23秒前
24秒前
LVMIN关注了科研通微信公众号
24秒前
东华帝君完成签到,获得积分10
24秒前
24秒前
26秒前
淡淡夕阳发布了新的文献求助10
26秒前
嘉梦完成签到,获得积分10
28秒前
29秒前
科研通AI5应助tRNA采纳,获得10
29秒前
Alex完成签到,获得积分10
30秒前
kelly发布了新的文献求助10
31秒前
米缸发布了新的文献求助10
31秒前
32秒前
小张完成签到,获得积分10
33秒前
LULU发布了新的文献求助10
37秒前
lbh发布了新的文献求助10
37秒前
王大锤完成签到,获得积分10
39秒前
40秒前
tRNA发布了新的文献求助10
46秒前
47秒前
LLL发布了新的文献求助10
48秒前
49秒前
53秒前
53秒前
LULU完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777121
求助须知:如何正确求助?哪些是违规求助? 3322546
关于积分的说明 10210579
捐赠科研通 3037903
什么是DOI,文献DOI怎么找? 1666952
邀请新用户注册赠送积分活动 797871
科研通“疑难数据库(出版商)”最低求助积分说明 758059