亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke

医学 磁共振成像 冲程(发动机) 灌注 核医学 灌注扫描 放射科 磁共振弥散成像 对比度(视觉) 体素 人工智能 计算机科学 机械工程 工程类
作者
Kai Wang,Qinyang Shou,J. Samantha,David S. Liebeskind,Xin Qiao,Jeffrey L. Saver,Noriko Salamon,Hosung Kim,Yannan Yu,Yuan Xie,Greg Zaharchuk,Fabien Scalzo,Danny J.J. Wang
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (2): 489-497 被引量:51
标识
DOI:10.1161/strokeaha.119.027457
摘要

Background and Purpose- Selection of patients with acute ischemic stroke for endovascular treatment generally relies on dynamic susceptibility contrast magnetic resonance imaging or computed tomography perfusion. Dynamic susceptibility contrast magnetic resonance imaging requires injection of contrast, whereas computed tomography perfusion requires high doses of ionizing radiation. The purpose of this work was to develop and evaluate a deep learning (DL)-based algorithm for assisting the selection of suitable patients with acute ischemic stroke for endovascular treatment based on 3-dimensional pseudo-continuous arterial spin labeling (pCASL). Methods- A total of 167 image sets of 3-dimensional pCASL data from 137 patients with acute ischemic stroke scanned on 1.5T and 3.0T Siemens MR systems were included for neural network training. The concurrently acquired dynamic susceptibility contrast magnetic resonance imaging was used to produce labels of hypoperfused brain regions, analyzed using commercial software. The DL and 6 machine learning (ML) algorithms were trained with 10-fold cross-validation. The eligibility for endovascular treatment was determined retrospectively based on the criteria of perfusion/diffusion mismatch in the DEFUSE 3 trial (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke). The trained DL algorithm was further applied on twelve 3-dimensional pCASL data sets acquired on 1.5T and 3T General Electric MR systems, without fine-tuning of parameters. Results- The DL algorithm can predict the dynamic susceptibility contrast-defined hypoperfusion region in pCASL with a voxel-wise area under the curve of 0.958, while the 6 ML algorithms ranged from 0.897 to 0.933. For retrospective determination for subject-level endovascular treatment eligibility, the DL algorithm achieved an accuracy of 92%, with a sensitivity of 0.89 and specificity of 0.95. When applied to the GE pCASL data, the DL algorithm achieved a voxel-wise area under the curve of 0.94 and a subject-level accuracy of 92% for endovascular treatment eligibility. Conclusions- pCASL perfusion magnetic resonance imaging in conjunction with the DL algorithm provides a promising approach for assisting decision-making for endovascular treatment in patients with acute ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
herococa发布了新的文献求助150
3秒前
9秒前
22秒前
herococa发布了新的文献求助10
23秒前
哭泣的丝完成签到 ,获得积分10
45秒前
50秒前
务实的焦完成签到 ,获得积分10
54秒前
犹豫的夏波完成签到 ,获得积分20
1分钟前
1分钟前
bopbopbaby完成签到 ,获得积分10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
1分钟前
直率的笑翠完成签到 ,获得积分10
2分钟前
longge233233完成签到,获得积分10
2分钟前
SCI的李完成签到 ,获得积分10
2分钟前
ffff完成签到 ,获得积分10
2分钟前
2分钟前
lalala发布了新的文献求助10
2分钟前
灵巧的语兰完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ding应助HJJHJH采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
herococa完成签到,获得积分10
4分钟前
LRxxx完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
HJJHJH发布了新的文献求助10
5分钟前
Murphy完成签到 ,获得积分10
5分钟前
敏感剑鬼关注了科研通微信公众号
5分钟前
Ji完成签到,获得积分10
5分钟前
忐忑的黑猫应助麻瓜采纳,获得10
5分钟前
可可发布了新的文献求助10
5分钟前
麻瓜完成签到,获得积分10
5分钟前
jokerhoney完成签到,获得积分10
6分钟前
automan发布了新的文献求助10
6分钟前
6分钟前
笑笑发布了新的文献求助10
7分钟前
安静的瑾瑜完成签到 ,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226580
捐赠科研通 3041495
什么是DOI,文献DOI怎么找? 1669449
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732