已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke

医学 磁共振成像 冲程(发动机) 灌注 核医学 灌注扫描 放射科 磁共振弥散成像 对比度(视觉) 体素 人工智能 计算机科学 机械工程 工程类
作者
Kai Wang,Qinyang Shou,J. Samantha,David S. Liebeskind,Xin Qiao,Jeffrey L. Saver,Noriko Salamon,Hosung Kim,Yannan Yu,Yuan Xie,Greg Zaharchuk,Fabien Scalzo,Danny J.J. Wang
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (2): 489-497 被引量:51
标识
DOI:10.1161/strokeaha.119.027457
摘要

Background and Purpose- Selection of patients with acute ischemic stroke for endovascular treatment generally relies on dynamic susceptibility contrast magnetic resonance imaging or computed tomography perfusion. Dynamic susceptibility contrast magnetic resonance imaging requires injection of contrast, whereas computed tomography perfusion requires high doses of ionizing radiation. The purpose of this work was to develop and evaluate a deep learning (DL)-based algorithm for assisting the selection of suitable patients with acute ischemic stroke for endovascular treatment based on 3-dimensional pseudo-continuous arterial spin labeling (pCASL). Methods- A total of 167 image sets of 3-dimensional pCASL data from 137 patients with acute ischemic stroke scanned on 1.5T and 3.0T Siemens MR systems were included for neural network training. The concurrently acquired dynamic susceptibility contrast magnetic resonance imaging was used to produce labels of hypoperfused brain regions, analyzed using commercial software. The DL and 6 machine learning (ML) algorithms were trained with 10-fold cross-validation. The eligibility for endovascular treatment was determined retrospectively based on the criteria of perfusion/diffusion mismatch in the DEFUSE 3 trial (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke). The trained DL algorithm was further applied on twelve 3-dimensional pCASL data sets acquired on 1.5T and 3T General Electric MR systems, without fine-tuning of parameters. Results- The DL algorithm can predict the dynamic susceptibility contrast-defined hypoperfusion region in pCASL with a voxel-wise area under the curve of 0.958, while the 6 ML algorithms ranged from 0.897 to 0.933. For retrospective determination for subject-level endovascular treatment eligibility, the DL algorithm achieved an accuracy of 92%, with a sensitivity of 0.89 and specificity of 0.95. When applied to the GE pCASL data, the DL algorithm achieved a voxel-wise area under the curve of 0.94 and a subject-level accuracy of 92% for endovascular treatment eligibility. Conclusions- pCASL perfusion magnetic resonance imaging in conjunction with the DL algorithm provides a promising approach for assisting decision-making for endovascular treatment in patients with acute ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷静灵竹发布了新的文献求助30
3秒前
3秒前
4秒前
6秒前
岂曰无衣完成签到 ,获得积分10
7秒前
7秒前
打打应助张琴英采纳,获得10
7秒前
zhen完成签到,获得积分10
7秒前
欢歌笑语完成签到,获得积分10
8秒前
万能图书馆应助格子采纳,获得10
8秒前
10秒前
清图完成签到,获得积分10
10秒前
10秒前
tianqing完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
书羽发布了新的文献求助10
11秒前
11秒前
FF关注了科研通微信公众号
11秒前
加油小李完成签到 ,获得积分10
12秒前
13秒前
五十发布了新的文献求助10
16秒前
纪复天发布了新的文献求助10
16秒前
16秒前
慕青应助guan采纳,获得10
17秒前
Asystasia7发布了新的文献求助10
17秒前
xiaoyaoyou完成签到,获得积分10
20秒前
21秒前
张雯思发布了新的文献求助10
22秒前
荔刻UTD发布了新的文献求助10
23秒前
科研通AI6应助冷静灵竹采纳,获得10
24秒前
格子发布了新的文献求助10
24秒前
26秒前
爱学习的杰杰杰完成签到,获得积分10
27秒前
27秒前
燕儿应助倪妮采纳,获得10
28秒前
29秒前
cc完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4752345
求助须知:如何正确求助?哪些是违规求助? 4097317
关于积分的说明 12677548
捐赠科研通 3810227
什么是DOI,文献DOI怎么找? 2103651
邀请新用户注册赠送积分活动 1128860
关于科研通互助平台的介绍 1005815