外骨骼
阻抗控制
稳健性(进化)
电阻抗
计算机科学
自适应控制
机械阻抗
机器人运动学
控制工程
控制理论(社会学)
机器人
工程类
移动机器人
控制(管理)
模拟
人工智能
电气工程
生物化学
基因
化学
作者
Zhijun Li,Zhicong Huang,Wei He,Chun‐Yi Su
标识
DOI:10.1109/tie.2016.2538741
摘要
This paper presents adaptive impedance control of an upper limb robotic exoskeleton using biological signals. First, we develop a reference musculoskeletal model of the human upper limb and experimentally calibrate the model to match the operator's motion behavior. Then, the proposed novel impedance algorithm transfers stiffness from human operator through the surface electromyography (sEMG) signals, being utilized to design the optimal reference impedance model. Considering the unknown deadzone effects in the robot joints and the absence of the precise knowledge of the robot's dynamics, an adaptive neural network control incorporating with a high-gain observer is developed to approximate the deadzone effect and robot's dynamics and drive the robot tracking desired trajectories without velocity measurements. In order to verify the robustness of the proposed approach, the actual implementation has been performed using a real robotic exoskeleton and a human operator.
科研通智能强力驱动
Strongly Powered by AbleSci AI