Robust ECG Signal Classification for the Detection of Atrial Fibrillation Using Novel Neural Networks

计算机科学 卷积神经网络 光谱图 深度学习 人工智能 模式识别(心理学) 学习迁移 帕斯卡(单位) 循环神经网络 特征提取 特征学习 人工神经网络 特征(语言学) 机器学习 哲学 程序设计语言 语言学
作者
Zhaohan Xiong,Martin K. Stiles,Jichao Zhao
出处
期刊:Computing in Cardiology (CinC), 2012 被引量:156
标识
DOI:10.22489/cinc.2017.066-138
摘要

Electrocardiograms (ECG) provide a non-invasive approach for clinical diagnosis in patients with cardiac problems, particularly atrial fibrillation (AF). Robust, automatic AF detection in clinics remains challenging.Deep learning has emerged as an effective tool for handling complex data analysis with minimal pre-and post-processing.A 16-layer 1D Convolutional Neural Network (CNN) was designed to classify the ECGs including AF.One of the key advances of the proposed CNN was that skip connections were employed to enhance the rate of information transfer throughout the network by connecting layers earlier in the network with layers later in the network.Skip connections led to a significant increase in the feature learning capabilities of the CNN as well as speeding up the training time.For comparisons, we also have implemented recurrent neural networks (RNN) and spectrogram learning.The CNN was trained on 8,528 ECGs and tested on 3,685 ECGs ranging from 9 to 60 seconds in length.The proposed 16-layer CNN outperformed RNNs and spectrogram learning.The training of the CNN took 2 hours on a Titan X Pascal GPU (NVidia) with 3840 cores.The testing accuracy for the CNN was 82% and the runtime was ~0.01 seconds for each signal classification.Particularly, the proposed CNN identified normal rhythm, AF and other rhythms with an accuracy of 90%, 82% and 75% respectively.We have demonstrated a novel CNN with skip connections to perform efficient, automatic ECG signal classification that could potentially aid robust patient diagnosis in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助cqnusq采纳,获得10
刚刚
刚刚
刚刚
1秒前
英吉利25发布了新的文献求助10
1秒前
Sky发布了新的文献求助10
2秒前
在水一方应助风中向薇采纳,获得10
2秒前
慕青应助唠叨的如松采纳,获得10
2秒前
3秒前
靓丽幻梅发布了新的文献求助10
3秒前
4秒前
4秒前
Hello应助hi采纳,获得10
5秒前
KH完成签到,获得积分10
5秒前
5秒前
wkjfh应助wang采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
wenxiao发布了新的文献求助10
8秒前
8秒前
orixero应助灵巧的寄风采纳,获得10
9秒前
9秒前
9秒前
顾矜应助zz采纳,获得10
11秒前
11秒前
晚风完成签到,获得积分20
11秒前
rengongzi应助xxxBlo采纳,获得10
11秒前
Tracy完成签到,获得积分10
12秒前
wang给wang的求助进行了留言
12秒前
12秒前
今后应助Jiayana采纳,获得30
12秒前
13秒前
14秒前
14秒前
李亮发布了新的文献求助10
14秒前
开朗渊思发布了新的文献求助10
14秒前
酒梅子发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850173
求助须知:如何正确求助?哪些是违规求助? 4149542
关于积分的说明 12854173
捐赠科研通 3896928
什么是DOI,文献DOI怎么找? 2141955
邀请新用户注册赠送积分活动 1161473
关于科研通互助平台的介绍 1061391