Automatic artefact detection in single‐channel sleep EEG recordings

脑电图 计算机科学 人工智能 模式识别(心理学) 自回归模型 一般化 灵敏度(控制系统) 频道(广播) 接收机工作特性 睡眠(系统调用) 机器学习 统计 数学 心理学 神经科学 工程类 操作系统 电子工程 数学分析 计算机网络
作者
Alexander Malafeev,Ximena Omlin,Aleksandra Wierzbicka,Adam Wichniak,Wojciech Jernajczyk,Robert Riener,Peter Achermann
出处
期刊:Journal of Sleep Research [Wiley]
卷期号:28 (2) 被引量:10
标识
DOI:10.1111/jsr.12679
摘要

Summary Quantitative electroencephalogram analysis (e.g. spectral analysis) has become an important tool in sleep research and sleep medicine. However, reliable results are only obtained if artefacts are removed or excluded. Artefact detection is often performed manually during sleep stage scoring, which is time consuming and prevents application to large datasets. We aimed to test the performance of mostly simple algorithms of artefact detection in polysomnographic recordings, derive optimal parameters and test their generalization capacity. We implemented 14 different artefact detection methods, optimized parameters for derivation C3A2 using receiver operator characteristic curves of 32 recordings, and validated them on 21 recordings of healthy participants and 10 recordings of patients (different laboratory) and considered the methods as generalizable. We also compared average power density spectra with artefacts excluded based on algorithms and expert scoring. Analyses were performed retrospectively. We could reliably identify artefact contaminated epochs in sleep electroencephalogram recordings of two laboratories (healthy participants and patients) reaching good sensitivity (specificity 0.9) with most algorithms. The best performance was obtained using fixed thresholds of the electroencephalogram slope, high‐frequency power (25–90 Hz or 45–90 Hz) and residuals of adaptive autoregressive models. Artefacts in electroencephalogram data can be reliably excluded by simple algorithms with good performance, and average electroencephalogram power density spectra with artefact exclusion based on algorithms and manual scoring are very similar in the frequency range relevant for most applications in sleep research and sleep medicine, allowing application to large datasets as needed to address questions related to genetics, epidemiology or precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪仔发布了新的文献求助10
刚刚
liu完成签到,获得积分10
刚刚
1秒前
1秒前
meizi发布了新的文献求助10
2秒前
在水一方应助杨榆藤采纳,获得10
2秒前
Akim应助希伊翁采纳,获得10
3秒前
ky发布了新的文献求助10
5秒前
6秒前
无私迎海完成签到,获得积分10
7秒前
8秒前
冷酷的海亦完成签到,获得积分10
8秒前
hanxi完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
manan发布了新的文献求助10
10秒前
粗心的绾绾应助LaTeXer采纳,获得10
11秒前
loey完成签到,获得积分10
12秒前
12秒前
思绪摸摸头完成签到 ,获得积分10
12秒前
13秒前
天行马发布了新的文献求助10
14秒前
小白菜发布了新的文献求助10
15秒前
乐观之瑶发布了新的文献求助10
15秒前
小伍发布了新的文献求助10
15秒前
Harley发布了新的文献求助10
16秒前
16秒前
HL完成签到,获得积分10
17秒前
整齐乐荷发布了新的文献求助10
17秒前
18秒前
九月完成签到,获得积分10
18秒前
zzz完成签到,获得积分10
21秒前
养乐多敬你完成签到 ,获得积分10
22秒前
思源应助俏皮的白柏采纳,获得10
23秒前
小佳子完成签到 ,获得积分10
24秒前
24秒前
笨笨芯发布了新的文献求助10
24秒前
风中的语蝶完成签到,获得积分20
24秒前
Ava应助从容芸采纳,获得10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812639
求助须知:如何正确求助?哪些是违规求助? 3357159
关于积分的说明 10385273
捐赠科研通 3074338
什么是DOI,文献DOI怎么找? 1688722
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986