局部二进制模式
人工智能
随机森林
模式识别(心理学)
计算机科学
分类器(UML)
判别式
上下文图像分类
深度学习
间接免疫荧光
图像(数学)
直方图
遗传学
生物
抗原
作者
Zakariya A. Oraibi,Hayder Yousif,Adel Hafiane,Guna Seetharaman,Kannappan Palaniappan
标识
DOI:10.1109/icip.2018.8451287
摘要
Automatic image classification systems for indirect immunofluorescence (IIF) labeling of human epithelial (HEp-2) cell specimens are needed to improve the efficient management of autoimmune diseases. In this paper, we propose to classify HEp-2 cell specimen imagery using a combination of local features and deep learning features extracted from the IIF images. Two local descriptors are used to capture texture information, namely: Rotation Invariant Co-occurrence among Local Binary Patterns (RIC-LBP) extending the LBP descriptor and Joint Motif Labels (JML) based on the Peano scan motif concept. Deep learning features are then extracted using the VGG-19 image classification network. Finally, all descriptors are combined using a late fusion approach with a Random Forests (RF) classifier with seven output classes. Experimental results show that our proposed framework achieves a mean class accuracy of 92.11% with five-fold cross validation using the RF classifier with 1000 trees on the HEp-2 specimen benchmark dataset, which outperforms the state-of-the-art accuracy on this dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI