Smart Building’s Elevator with Intelligent Control Algorithm based on Bayesian Networks

计算机科学 电梯 算法 贝叶斯网络 概率逻辑 机器学习 变量(数学) 人工智能 材料科学 复合材料 数学分析 数学
作者
Yerzhigit Bapin,Vasilios Zarikas
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:10 (2) 被引量:24
标识
DOI:10.14569/ijacsa.2019.0100203
摘要

Implementation of the intelligent elevator control systems based on machine-learning algorithms should play an important role in our effort to improve the sustainability and convenience of multi-floor buildings. Traditional elevator control algorithms are not capable of operating efficiently in the presence of uncertainty caused by random flow of people. As opposed to conventional elevator control approach, the proposed algorithm utilizes the information about passenger group sizes and their waiting time, provided by the image acquisition and processing system. Next, this information is used by the probabilistic decision-making model to conduct Bayesian inference and update the variable parameters. The proposed algorithm utilizes the variable elimination technique to reduce the computational complexity associated with calculation of marginal and conditional probabilities, and Expectation-Maximization algorithm to ensure the completeness of the data sets. The proposed algorithm was evaluated by assessing the correspondence level of the resulting decisions with expected ones. Significant improvement in correspondence level was obtained by adjusting the probability distributions of the variables affecting the decision-making process. The aim was to construct a decision engine capable to control the elevators actions, in way that improves user’s satisfaction. Both sensitivity analysis and evaluation study of the implemented model, according to several scenarios, are presented. The overall algorithm proved to exhibit the desired behavior, in 94% case of the scenarios tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖头鱼666完成签到,获得积分10
2秒前
2秒前
aikey完成签到 ,获得积分10
2秒前
卷心菜发布了新的文献求助10
3秒前
4秒前
陶醉襄完成签到,获得积分10
4秒前
Ying完成签到,获得积分10
4秒前
5秒前
5秒前
NexusExplorer应助kkkkkoi采纳,获得10
5秒前
酷酷千愁完成签到,获得积分10
5秒前
派大星完成签到 ,获得积分10
6秒前
具体问题具体分析完成签到 ,获得积分10
6秒前
卡卡发布了新的文献求助10
7秒前
Cherish应助自然的砖头采纳,获得10
7秒前
Owen应助自然的砖头采纳,获得10
7秒前
我是老大应助活泼的冷雁采纳,获得10
8秒前
8秒前
9秒前
9秒前
jackie完成签到,获得积分20
10秒前
10秒前
乐乐应助英勇代荷采纳,获得10
12秒前
充电宝应助逐月生采纳,获得30
13秒前
子云发布了新的文献求助10
13秒前
成就老头完成签到,获得积分10
14秒前
阿辉发布了新的文献求助10
14秒前
15秒前
15秒前
FashionBoy应助Mida采纳,获得10
15秒前
15秒前
卷心菜完成签到,获得积分10
16秒前
laurentli完成签到,获得积分10
17秒前
香香的菠萝蜜完成签到,获得积分10
18秒前
愉快的藏今完成签到,获得积分10
19秒前
19秒前
酷酷千愁应助清云采纳,获得10
20秒前
22秒前
洋洋完成签到 ,获得积分10
24秒前
26秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844484
求助须知:如何正确求助?哪些是违规求助? 3386857
关于积分的说明 10546388
捐赠科研通 3107336
什么是DOI,文献DOI怎么找? 1711707
邀请新用户注册赠送积分活动 824140
科研通“疑难数据库(出版商)”最低求助积分说明 774573