基因组
DNA测序
可扩展性
计算机科学
计算生物学
k-mer公司
DNA
生物
人工智能
遗传学
基因
数据库
作者
Romain Menegaux,Jean‐Philippe Vert
标识
DOI:10.1089/cmb.2018.0174
摘要
We propose a new model for fast classification of DNA sequences output by next-generation sequencing machines. The model, which we call fastDNA, embeds DNA sequences in a vector space by learning continuous low-dimensional representations of thek-mers it contains. We show on metagenomics benchmarks that it outperforms the state-of-the-art methods in terms of accuracy and scalability.
科研通智能强力驱动
Strongly Powered by AbleSci AI