Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks

计算机科学 电力系统 人工神经网络 水准点(测量) 估计员 背景(考古学) 循环神经网络 杠杆(统计) 深度学习 解算器 可扩展性 人工智能 机器学习 功率(物理) 地理 程序设计语言 物理 古生物学 大地测量学 统计 生物 数据库 量子力学 数学
作者
Liang Zhang,Gang Wang,Georgios B. Giannakis
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:67 (15): 4069-4077 被引量:236
标识
DOI:10.1109/tsp.2019.2926023
摘要

Contemporary power grids are being challenged by rapid voltage fluctuations\nthat are caused by large-scale deployment of renewable generation, electric\nvehicles, and demand response programs. In this context, monitoring the grid's\noperating conditions in real time becomes increasingly critical. With the\nemergent large scale and nonconvexity however, the existing power system state\nestimation (PSSE) schemes become computationally expensive or yield suboptimal\nperformance. To bypass these hurdles, this paper advocates deep neural networks\n(DNNs) for real-time power system monitoring. By unrolling an iterative\nphysics-based prox-linear solver, a novel model-specific DNN is developed for\nreal-time PSSE with affordable training and minimal tuning effort. To further\nenable system awareness even ahead of the time horizon, as well as to endow the\nDNN-based estimator with resilience, deep recurrent neural networks (RNNs) are\nalso pursued for power system state forecasting. Deep RNNs leverage the\nlong-term nonlinear dependencies present in the historical voltage time series\nto enable forecasting, and they are easy to implement. Numerical tests showcase\nimproved performance of the proposed DNN-based estimation and forecasting\napproaches compared with existing alternatives. In real load data experiments\non the IEEE 118-bus benchmark system, the novel model-specific DNN-based PSSE\nscheme outperforms nearly by an order-of-magnitude the competing alternatives,\nincluding the widely adopted Gauss-Newton PSSE solver.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陶1122完成签到,获得积分10
3秒前
领导范儿应助阿里院士采纳,获得10
4秒前
观察者完成签到,获得积分10
4秒前
坚强的隶发布了新的文献求助10
4秒前
5秒前
追寻的身影完成签到,获得积分10
6秒前
orixero应助荣荣采纳,获得10
6秒前
7秒前
7秒前
悦耳白山应助su采纳,获得10
7秒前
7秒前
zizilala完成签到,获得积分10
8秒前
秋子david完成签到,获得积分10
9秒前
FFF完成签到,获得积分10
11秒前
12332145678发布了新的文献求助10
11秒前
11秒前
Feng完成签到 ,获得积分10
12秒前
JamesPei应助小凌采纳,获得10
13秒前
Menand完成签到,获得积分10
13秒前
考拉完成签到,获得积分10
13秒前
14秒前
慕青应助青云采纳,获得10
14秒前
完美世界应助机灵隶采纳,获得10
15秒前
16秒前
16秒前
Ky_Mac应助科研通管家采纳,获得30
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
Ky_Mac应助科研通管家采纳,获得30
19秒前
yfn应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
yfn应助科研通管家采纳,获得10
19秒前
无极微光应助科研通管家采纳,获得20
19秒前
mo发布了新的文献求助10
19秒前
Sanma应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
Sanma应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得30
19秒前
丘比特应助科研通管家采纳,获得30
19秒前
wanci应助科研通管家采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742835
求助须知:如何正确求助?哪些是违规求助? 5410665
关于积分的说明 15345946
捐赠科研通 4883896
什么是DOI,文献DOI怎么找? 2625419
邀请新用户注册赠送积分活动 1574229
关于科研通互助平台的介绍 1531192