Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks

计算机科学 电力系统 人工神经网络 水准点(测量) 估计员 背景(考古学) 循环神经网络 杠杆(统计) 深度学习 解算器 可扩展性 人工智能 机器学习 功率(物理) 地理 程序设计语言 物理 古生物学 大地测量学 统计 生物 数据库 量子力学 数学
作者
Liang Zhang,Gang Wang,Georgios B. Giannakis
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:67 (15): 4069-4077 被引量:236
标识
DOI:10.1109/tsp.2019.2926023
摘要

Contemporary power grids are being challenged by rapid voltage fluctuations\nthat are caused by large-scale deployment of renewable generation, electric\nvehicles, and demand response programs. In this context, monitoring the grid's\noperating conditions in real time becomes increasingly critical. With the\nemergent large scale and nonconvexity however, the existing power system state\nestimation (PSSE) schemes become computationally expensive or yield suboptimal\nperformance. To bypass these hurdles, this paper advocates deep neural networks\n(DNNs) for real-time power system monitoring. By unrolling an iterative\nphysics-based prox-linear solver, a novel model-specific DNN is developed for\nreal-time PSSE with affordable training and minimal tuning effort. To further\nenable system awareness even ahead of the time horizon, as well as to endow the\nDNN-based estimator with resilience, deep recurrent neural networks (RNNs) are\nalso pursued for power system state forecasting. Deep RNNs leverage the\nlong-term nonlinear dependencies present in the historical voltage time series\nto enable forecasting, and they are easy to implement. Numerical tests showcase\nimproved performance of the proposed DNN-based estimation and forecasting\napproaches compared with existing alternatives. In real load data experiments\non the IEEE 118-bus benchmark system, the novel model-specific DNN-based PSSE\nscheme outperforms nearly by an order-of-magnitude the competing alternatives,\nincluding the widely adopted Gauss-Newton PSSE solver.\n

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助前行的灿采纳,获得10
1秒前
寄托完成签到 ,获得积分10
2秒前
2秒前
糯米饭发布了新的文献求助10
3秒前
绿色的军大衣完成签到,获得积分10
4秒前
fufu完成签到 ,获得积分10
4秒前
5秒前
5秒前
浮游应助jwh111采纳,获得10
6秒前
priscilla发布了新的文献求助10
7秒前
Arrow完成签到,获得积分10
8秒前
BFUstbc发布了新的文献求助30
9秒前
fmx完成签到,获得积分10
9秒前
10秒前
kk发布了新的文献求助10
11秒前
翯翯完成签到 ,获得积分10
12秒前
12秒前
14秒前
廾匸发布了新的文献求助20
14秒前
科研通AI2S应助甜美修洁采纳,获得10
14秒前
11发布了新的文献求助10
15秒前
天天快乐应助dr采纳,获得10
16秒前
幽默与研发布了新的文献求助10
17秒前
hululu完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
充电宝应助提提在干嘛采纳,获得10
20秒前
小明应助Dor59采纳,获得10
21秒前
21秒前
邓什么邓发布了新的文献求助10
21秒前
小二郎应助幽默与研采纳,获得10
23秒前
11完成签到,获得积分20
24秒前
24秒前
周涨杰发布了新的文献求助10
24秒前
BFUstbc完成签到,获得积分10
27秒前
兰粥拉面完成签到,获得积分10
27秒前
28秒前
852应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457723
求助须知:如何正确求助?哪些是违规求助? 4563994
关于积分的说明 14293028
捐赠科研通 4488769
什么是DOI,文献DOI怎么找? 2458704
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343