亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid physics-informed neural network for main bearing fatigue prognosis under grease quality variation

润滑油 方位(导航) 人工神经网络 涡轮机 润滑油 计算机科学 降级(电信) 工程类 汽车工程 人工智能 机械工程 材料科学 复合材料 电信
作者
Yigit Yucesan,Felipe Viana
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:171: 108875-108875 被引量:88
标识
DOI:10.1016/j.ymssp.2022.108875
摘要

Fatigue life of a wind turbine main bearing is drastically affected by the state of the grease used as lubricant. Unfortunately monitoring the grease condition through predictive models can be a daunting task due to uncertainties associated with degradation mechanism and variations in grease batch quality. Eventually, discrepancies in the grease life predictions caused by variable grease quality may lead up to inaccurate bearing fatigue life predictions. The convoluted nature of the problem requires a novel solution approach; and in this contribution, we propose a new hybrid physics-informed neural network model. We construct a hybrid model for bearing fatigue damage accumulation embedded as a recurrent neural network cell, where reduced-order physics models used for bearing fatigue damage accumulation, and neural networks represent grease degradation mechanism that quantifies grease damage that ultimately accelerates bearing fatigue. We outline a two-step probabilistic approach to quantify the grease quality variation. In the first step, we make use of the hybrid model to learn the grease degradation when the quality is the median of the distribution. In the second step, we take the median predictor from the first step and track the quantiles of the quality distribution by examining grease samples of each wind turbine. We finally showcase our approach with a numerical experiment, where we test the effect of the random realizations of quality variation and the number of sampled turbines on the performance of the model. Results of the numerical experiment indicate that given enough samples from different wind turbines, our method can successfully learn the median grease degradation and uncertainty about it. With this predictive model, we are able to optimize the regreasing intervals on a turbine-by-turbine basis. The source codes and links to the data can be found in the following GitHub repository https://github.com/PML-UCF/pinn_wind_bearing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
30秒前
30秒前
Alimove发布了新的文献求助10
33秒前
大模型应助Alimove采纳,获得30
43秒前
FashionBoy应助ZBQ采纳,获得10
54秒前
浮游应助zing采纳,获得10
55秒前
情怀应助爱妍采纳,获得10
1分钟前
1分钟前
ZBQ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱妍发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱妍完成签到,获得积分20
1分钟前
彭于晏应助study采纳,获得10
1分钟前
1分钟前
study完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助study采纳,获得10
1分钟前
2分钟前
study发布了新的文献求助10
2分钟前
2分钟前
study发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hehe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Huzhu应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
balko完成签到,获得积分10
3分钟前
3分钟前
4分钟前
完美世界应助阿巴采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505