Rationally Engineered Reox -Cuso4/Tio2 Catalyst with Superior Nh3-Sco Efficiency and Remarkably Boosted So2 Tolerance: Synergy of Acid Sites and Surface Adsorbed Oxygen

催化作用 吸附 氧气 化学 化学工程 材料科学 生物化学 有机化学 工程类
作者
Yanke Yu,Desheng Wei,Zhaojian Tong,Wang Jinxiu,Jinsheng Chen,Chi He
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4028173
摘要

Ammonia (NH3) is a critical component causing environmental problems like haze and water pollution. Selective catalytic oxidation of ammonia (NH3-SCO) to N2 and H2O is a promising method to abate NH3 emission. However, inferior SO2 tolerance is still a tremendous challenge to be conquered for present NH3-SCO catalysts regarding practical applications. Application of materials which was difficult to be sulfated by SO2 should be an effective pathway to solve this problem. Here, a ReOx-CuSO4/TiO2 catalyst which coupled the advantages of ReOx (Rhenium oxides, supplying highly active adsorbed surface oxygen for enhancing NH3-SCO reaction) and CuSO4 (providing Brønsted acid sites for inhibiting the formation of N2O) was rationally fabricated. Results indicated that ReOx-CuSO4/TiO2 catalyst performed excellent catalytic performance in NH3-SCO with almost 100% of NH3 oxidized at 300 °C (N2 selectivity as high as 96%). Crucially, the composite catalyst exhibited incredible activity and stability under harsh reaction conditions toward SO2 (600 ppm) and H2O (4.0 vol.%) owing to the superior inhibition capability for SO2 adsorption. In situ DRIFTS, in situ Raman and in situ XPS demonstrated that the NH3-SCO reaction over ReOx-CuSO4/TiO2 catalyst mainly obeyed a N2H4 reaction mechanism and oxidation-reduction circle between Re7+ and Re6+ played a vital role. In addition, SO2 would not affect this reaction mechanism on ReOx-CuSO4/TiO2 catalyst. The knowledge and understanding reported could provide critical insights for the design and optimization of efficient materials for industrial NH3 oxidative elimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyiyaxin完成签到 ,获得积分10
1秒前
1秒前
12334完成签到,获得积分10
5秒前
zhouleiwang发布了新的文献求助10
6秒前
伊可完成签到 ,获得积分10
10秒前
天天快乐应助无算浮白采纳,获得10
11秒前
辛勤的大帅完成签到,获得积分10
11秒前
单身的青柏完成签到 ,获得积分10
11秒前
pluto给xxyhh的求助进行了留言
12秒前
15秒前
一只鱼完成签到,获得积分10
16秒前
Yuan应助爱听歌笑寒采纳,获得10
17秒前
18秒前
爸爸完成签到,获得积分10
20秒前
Refuel发布了新的文献求助10
21秒前
22秒前
九九关注了科研通微信公众号
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
Jiny完成签到,获得积分10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
1561giou发布了新的文献求助10
23秒前
23秒前
dorjeetashi完成签到,获得积分20
24秒前
显眼包发布了新的文献求助10
24秒前
cfjbxf完成签到,获得积分10
29秒前
深情安青应助忽闻水采纳,获得10
31秒前
STAR完成签到 ,获得积分10
32秒前
怡然凌柏完成签到 ,获得积分10
33秒前
35秒前
1561giou完成签到,获得积分10
36秒前
37秒前
sunwen发布了新的文献求助10
41秒前
Refuel完成签到,获得积分10
42秒前
科研通AI5应助王艺玮采纳,获得20
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781324
求助须知:如何正确求助?哪些是违规求助? 3326844
关于积分的说明 10228534
捐赠科研通 3041858
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751