TCGL: Temporal Contrastive Graph for Self-supervised Video Representation Learning

计算机科学 人工智能 图形 特征学习 代表(政治) 模式识别(心理学)
作者
Yang Liu,Keze Wang,Lingbo Liu,Haoyuan Lan,Liang Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2022.3147032
摘要

Video self-supervised learning is a challenging task, which requires significant expressive power from the model to leverage rich spatial-temporal knowledge and generate effective supervisory signals from large amounts of unlabeled videos. However, existing methods fail to increase the temporal diversity of unlabeled videos and ignore elaborately modeling multi-scale temporal dependencies in an explicit way. To overcome these limitations, we take advantage of the multi-scale temporal dependencies within videos and proposes a novel video self-supervised learning framework named Temporal Contrastive Graph Learning (TCGL), which jointly models the inter-snippet and intra-snippet temporal dependencies for temporal representation learning with a hybrid graph contrastive learning strategy. Specifically, a Spatial-Temporal Knowledge Discovering (STKD) module is first introduced to extract motion-enhanced spatial-temporal representations from videos based on the frequency domain analysis of discrete cosine transform. To explicitly model multi-scale temporal dependencies of unlabeled videos, our TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet Temporal Contrastive Graphs (TCG). Then, specific contrastive learning modules are designed to maximize the agreement between nodes in different graph views. To generate supervisory signals for unlabeled videos, we introduce an Adaptive Snippet Order Prediction (ASOP) module which leverages the relational knowledge among video snippets to learn the global context representation and recalibrate the channel-wise features adaptively. Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks. The code is publicly available at https://github.com/YangLiu9208/TCGL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feb完成签到,获得积分10
2秒前
66发布了新的文献求助10
2秒前
萨芬撒发布了新的文献求助10
3秒前
葶苈子完成签到 ,获得积分10
5秒前
李健应助简单刺猬采纳,获得10
7秒前
GreenDuane完成签到 ,获得积分0
10秒前
纤尘cc关注了科研通微信公众号
10秒前
美丽的凌蝶完成签到,获得积分10
14秒前
Behappy完成签到 ,获得积分10
16秒前
66完成签到,获得积分20
16秒前
北落完成签到 ,获得积分10
18秒前
19秒前
丘比特应助haoooooooooooooo采纳,获得10
20秒前
纤尘cc发布了新的文献求助10
24秒前
一日不看书智商输给猪完成签到,获得积分10
26秒前
26秒前
简单刺猬发布了新的文献求助10
32秒前
aha应助林莹采纳,获得30
34秒前
fwl完成签到 ,获得积分10
36秒前
37秒前
42秒前
科研通AI5应助Han采纳,获得10
43秒前
Cherry发布了新的文献求助10
45秒前
路痴完成签到,获得积分10
48秒前
51秒前
笑笑完成签到,获得积分20
53秒前
54秒前
55秒前
笑笑发布了新的文献求助10
56秒前
59秒前
imomoe完成签到,获得积分10
1分钟前
1分钟前
1分钟前
乐乐应助greatsnow采纳,获得10
1分钟前
asdf发布了新的文献求助10
1分钟前
1分钟前
内向绿竹发布了新的文献求助10
1分钟前
1分钟前
1分钟前
吴可之发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385