A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics

模态(人机交互) 图像融合 医学影像学 计算机科学 模式 人工智能 多模态 融合 传感器融合 医学诊断 医学物理学 机器学习 医学 图像(数学) 放射科 万维网 哲学 社会学 语言学 社会科学
作者
Muhammad Adeel Azam,Khan Bahadar Khan,Sana Salahuddin,Eid Rehman,Sajid Ali Khan,Muhammad Attique Khan,Seifedine Kadry,Amir H. Gandomi
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:144: 105253-105253 被引量:335
标识
DOI:10.1016/j.compbiomed.2022.105253
摘要

Over the past two decades, medical imaging has been extensively apply to diagnose diseases. Medical experts continue to have difficulties for diagnosing diseases with a single modality owing to a lack of information in this domain. Image fusion may be use to merge images of specific organs with diseases from a variety of medical imaging systems. Anatomical and physiological data may be included in multi-modality image fusion, making diagnosis simpler. It is a difficult challenge to find the best multimodal medical database with fusion quality evaluation for assessing recommended image fusion methods. As a result, this article provides a complete overview of multimodal medical image fusion methodologies, databases, and quality measurements. In this article, a compendious review of different medical imaging modalities and evaluation of related multimodal databases along with the statistical results is provided. The medical imaging modalities are organized based on radiation, visible-light imaging, microscopy, and multimodal imaging. The medical imaging acquisition is categorized into invasive or non-invasive techniques. The fusion techniques are classified into six main categories: frequency fusion, spatial fusion, decision-level fusion, deep learning, hybrid fusion, and sparse representation fusion. In addition, the associated diseases for each modality and fusion approach presented. The quality assessments fusion metrics are also encapsulated in this article. This survey provides a baseline guideline to medical experts in this technical domain that may combine preoperative, intraoperative, and postoperative imaging, Multi-sensor fusion for disease detection, etc. The advantages and drawbacks of the current literature are discussed, and future insights are provided accordingly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小水发布了新的文献求助10
1秒前
蒙森爱阿洋完成签到,获得积分20
1秒前
2秒前
周正发布了新的文献求助30
2秒前
贪玩笑容完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
紫色奶萨完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
爱听歌的悒完成签到,获得积分10
6秒前
6秒前
7秒前
隐形曼青应助可可采纳,获得10
7秒前
SciGPT应助松松松采纳,获得10
7秒前
Ppao7ii完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
CodeCraft应助不安雪一采纳,获得10
8秒前
才染发布了新的文献求助10
9秒前
依古比古发布了新的文献求助10
9秒前
9秒前
MET1发布了新的文献求助10
10秒前
10秒前
xxcccc发布了新的文献求助10
11秒前
11秒前
无极微光应助小怪采纳,获得20
12秒前
才染发布了新的文献求助10
12秒前
Erste完成签到 ,获得积分10
12秒前
逍遥游发布了新的文献求助10
13秒前
13秒前
13秒前
ding应助NeoWu采纳,获得10
15秒前
爆米花应助Larry1226采纳,获得10
15秒前
研友_VZG7GZ应助窖藏喜之郎采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730174
求助须知:如何正确求助?哪些是违规求助? 5321976
关于积分的说明 15318160
捐赠科研通 4876827
什么是DOI,文献DOI怎么找? 2619662
邀请新用户注册赠送积分活动 1569070
关于科研通互助平台的介绍 1525722