A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics

模态(人机交互) 图像融合 医学影像学 计算机科学 模式 人工智能 多模态 融合 传感器融合 医学诊断 医学物理学 机器学习 医学 图像(数学) 放射科 万维网 哲学 社会学 语言学 社会科学
作者
Muhammad Adeel Azam,Khan Bahadar Khan,Sana Salahuddin,Eid Rehman,Sajid Ali Khan,Muhammad Attique Khan,Seifedine Kadry,Amir H. Gandomi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105253-105253 被引量:212
标识
DOI:10.1016/j.compbiomed.2022.105253
摘要

Over the past two decades, medical imaging has been extensively apply to diagnose diseases. Medical experts continue to have difficulties for diagnosing diseases with a single modality owing to a lack of information in this domain. Image fusion may be use to merge images of specific organs with diseases from a variety of medical imaging systems. Anatomical and physiological data may be included in multi-modality image fusion, making diagnosis simpler. It is a difficult challenge to find the best multimodal medical database with fusion quality evaluation for assessing recommended image fusion methods. As a result, this article provides a complete overview of multimodal medical image fusion methodologies, databases, and quality measurements. In this article, a compendious review of different medical imaging modalities and evaluation of related multimodal databases along with the statistical results is provided. The medical imaging modalities are organized based on radiation, visible-light imaging, microscopy, and multimodal imaging. The medical imaging acquisition is categorized into invasive or non-invasive techniques. The fusion techniques are classified into six main categories: frequency fusion, spatial fusion, decision-level fusion, deep learning, hybrid fusion, and sparse representation fusion. In addition, the associated diseases for each modality and fusion approach presented. The quality assessments fusion metrics are also encapsulated in this article. This survey provides a baseline guideline to medical experts in this technical domain that may combine preoperative, intraoperative, and postoperative imaging, Multi-sensor fusion for disease detection, etc. The advantages and drawbacks of the current literature are discussed, and future insights are provided accordingly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吹吹发布了新的文献求助10
1秒前
lucgyn发布了新的文献求助10
1秒前
2秒前
6秒前
七七四十九完成签到,获得积分10
7秒前
8秒前
实验耗材发布了新的文献求助10
9秒前
吹吹完成签到,获得积分10
9秒前
佳音发布了新的文献求助10
9秒前
lucgyn完成签到,获得积分10
13秒前
Weiyu完成签到 ,获得积分10
13秒前
19秒前
专一的幻桃完成签到,获得积分10
21秒前
NexusExplorer应助sure采纳,获得10
22秒前
晓宇发布了新的文献求助10
22秒前
23秒前
清茶韵心发布了新的文献求助10
27秒前
27秒前
27秒前
实验耗材完成签到 ,获得积分10
29秒前
34秒前
ezekiet完成签到 ,获得积分10
34秒前
35秒前
文章中中中完成签到,获得积分20
36秒前
ersan完成签到,获得积分10
36秒前
39秒前
40秒前
42秒前
47秒前
笑笑完成签到,获得积分20
48秒前
49秒前
49秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
Jasper应助科研通管家采纳,获得10
49秒前
打打应助科研通管家采纳,获得30
49秒前
所所应助科研通管家采纳,获得30
49秒前
Akim应助科研通管家采纳,获得10
49秒前
完美世界应助科研通管家采纳,获得10
50秒前
斯文败类应助科研通管家采纳,获得10
50秒前
勿明应助科研通管家采纳,获得30
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385