Quality Enhancement of Dynamic Brain PET Images via unsupervised learning

人工智能 降噪 计算机科学 图像分辨率 正电子发射断层摄影术 迭代重建 计算机视觉 模式识别(心理学) 噪音(视频) 深度学习 图像质量 高斯模糊 帧(网络) 高斯分布
作者
Sanaz Kaviani,Mersede Mokri,Claire Cohalan,Daniel Juneau,Jean-FranCois Carrier
标识
DOI:10.1109/bmeicon53485.2021.9745248
摘要

Dynamic Positron Emission Tomography (PET) imaging modality is of great importance in nuclear medicine by measuring quantitive parameters to support clinical decisions. However, limitation in time acquisition due to low count rates causes increased noise levels. Furthermore, conventional denoising methods, including filtration, has the disadvantage of decreasing image resolution. Additionally, methods using supervised deep learning require a big dataset for high accuracy. In this paper, we used unsupervised deep learning to enhance the quality of the dynamic brain PET images by noise reduction while preserving spatial resolution.In this method, ten patients’dynamic 18 F-FDG brain PET images were assessed. The Images with 10-sec frame reconstruction were considered noisy images, while 60-sec frame reconstruction was appointed as ground truth. A 3D U-Net architecture with skip connections considering optimized parameters was designed, and training was carried out using static PET and CT images as inputs. The results were compared with Gaussian and NLM filtering methods.The results show the Mean PSNR of 18.35(dB) in our proposed method of using DIP with CT images and 18.29(dB) with static images as priors compared to 16.21 and 16.02 for NLM and Gaussian filtering denoising method respectively. Mean SSIM in our framework is 0.711 in DIP by static PET images and 0.744 by CT images while NLM and Gaussian filtering display values of 0.44 and 0.45.Our proposed algorithm and designed 3D-UNet model is capable of enhancing dynamic PET/CT images quality using only its single static PET and CT images. This unsupervised learning method is time-efficient which could be applied clinically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HCLonely完成签到,获得积分0
刚刚
Suliove完成签到,获得积分10
1秒前
波波完成签到 ,获得积分10
2秒前
zxt完成签到,获得积分10
4秒前
土木搬砖法律完成签到,获得积分10
4秒前
yiluyouni完成签到,获得积分0
5秒前
双碳小王子完成签到,获得积分10
5秒前
外向梦安发布了新的文献求助10
5秒前
gwenjing完成签到,获得积分10
5秒前
杨一发布了新的文献求助10
6秒前
sq完成签到 ,获得积分10
6秒前
7秒前
8秒前
黄瓜橙橙完成签到,获得积分0
9秒前
9秒前
縤雨完成签到 ,获得积分10
10秒前
杨888完成签到,获得积分10
11秒前
半颗橙子完成签到 ,获得积分10
11秒前
养猪大户完成签到 ,获得积分10
12秒前
日月星完成签到,获得积分10
12秒前
AWMKK发布了新的文献求助10
13秒前
walawala完成签到 ,获得积分10
13秒前
NorthWang完成签到,获得积分0
15秒前
恰恰完成签到,获得积分10
15秒前
drughunter完成签到,获得积分10
16秒前
小詹完成签到,获得积分10
16秒前
胖丁完成签到,获得积分10
17秒前
马东完成签到,获得积分10
17秒前
黄花完成签到 ,获得积分10
18秒前
努力向上的小刘完成签到,获得积分10
18秒前
若若1223完成签到 ,获得积分10
18秒前
20秒前
猪猪hero发布了新的文献求助10
21秒前
Iris完成签到 ,获得积分10
21秒前
李爱国应助ee采纳,获得10
25秒前
26秒前
上善若水发布了新的文献求助10
27秒前
烂漫的煎饼完成签到 ,获得积分10
29秒前
Java完成签到,获得积分10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840917
求助须知:如何正确求助?哪些是违规求助? 3382820
关于积分的说明 10526658
捐赠科研通 3102702
什么是DOI,文献DOI怎么找? 1708952
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632