已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Framework for the Prediction and Assessment of Corrosion Damages in Amine Systems Using Plant Data, Process Simulation and Data Analysis

腐蚀 计算机科学 过程(计算) 数据挖掘 数据建模 可靠性工程 工程类 材料科学 数据库 冶金 操作系统
作者
Daniela Galatro,Gladys Navas
出处
期刊:SPE Western Regional Meeting 被引量:2
标识
DOI:10.2118/209330-ms
摘要

Abstract The prediction and assessment of corrosion rates in amine gas treating units include reviewing current and historical environmental components such as amine type, H2S and CO2 loading, and temperature; to identify, trend, and provide corrective actions for potential problems related to streams quality, contamination, or damage diagnosis. This review is completed with data obtained from traditional off-line monitoring methods, such as mechanical integrity reports and analysis of the process streams, to capture the state of criticality of the system. Recent advances in corrosion modeling of amine systems allow integrating this data with numerical modeling to effectively quantity and predict corrosion rates. Numerical modeling is based on empirical models, which are usually limited within the ranges of data used in their development, unlike first-principles models that can accurately extrapolate beyond this range. Furthermore, empirical models may lead to significant errors when extrapolated outside the range of the training data. Therefore, their accuracy can be substantially improved by adding data generated from first- principles models through a sensitivity analysis of process and corrosion-related variables. This work proposes a framework for predicting and assessing corrosion rates in amine gas treating units, using surrogate models that combine process simulation software and plant data. A first-principles model of a simulated amine plant is employed to predict process-related variables, combined with a mechanistic model used to predict corrosion rates. Once the data is collected, exploratory data analysis is employed to quantify the correlation between process and corrosion variables, dimensionality reduction, outliers’ detection and treatment, and model performance evaluation. This framework also provides guidelines for selecting surrogate models predicting process variables and corrosion rates. These models can eventually be coupled with multi-objective optimization algorithms for control purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
William_l_c完成签到,获得积分10
2秒前
专注的安青完成签到 ,获得积分10
3秒前
Metaphor完成签到 ,获得积分10
3秒前
wangzian完成签到 ,获得积分10
4秒前
丰富的泥猴桃完成签到,获得积分10
10秒前
绾妤完成签到 ,获得积分0
11秒前
三岁完成签到 ,获得积分10
18秒前
一切顺利完成签到,获得积分10
22秒前
Gyeylhy完成签到 ,获得积分10
24秒前
所所应助dc采纳,获得10
28秒前
Much完成签到 ,获得积分10
29秒前
29秒前
一百二十一块七毛五完成签到 ,获得积分10
31秒前
隐形的觅夏完成签到 ,获得积分10
33秒前
提拉米草完成签到,获得积分10
36秒前
36秒前
38秒前
科目三应助科研通管家采纳,获得10
38秒前
哈牛柚子鹿完成签到,获得积分10
38秒前
e麓绝尘完成签到 ,获得积分10
39秒前
40秒前
欣喜的人龙完成签到 ,获得积分10
50秒前
www完成签到 ,获得积分10
52秒前
义气念柏完成签到,获得积分20
52秒前
傲骨完成签到 ,获得积分10
55秒前
科研通AI6应助暴躁的雪碧采纳,获得10
56秒前
56秒前
orixero应助sln采纳,获得10
57秒前
乐乐应助义气念柏采纳,获得10
58秒前
灵感大王喵完成签到 ,获得积分10
58秒前
阿花阿花发布了新的文献求助10
1分钟前
1分钟前
开心的蓝骆驼完成签到,获得积分10
1分钟前
阿花阿花完成签到,获得积分10
1分钟前
1分钟前
孝顺的蛋挞完成签到,获得积分10
1分钟前
sln发布了新的文献求助10
1分钟前
蛋仔完成签到 ,获得积分10
1分钟前
小灰灰的长颈鹿完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805657
求助须知:如何正确求助?哪些是违规求助? 4121507
关于积分的说明 12752145
捐赠科研通 3855149
什么是DOI,文献DOI怎么找? 2122885
邀请新用户注册赠送积分活动 1145059
关于科研通互助平台的介绍 1036540