亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

POI-3DGCN: Predicting odor intensity of monomer flavors based on three-dimensionally embedded graph convolutional network

计算机科学 联营 气味 图形 人工智能 稳健性(进化) 模式识别(心理学) 分子图 机器学习 理论计算机科学 生物化学 化学 神经科学 基因 生物
作者
Qi Liu,Dehan Luo,Tengteng Wen,Hamid GholamHosseini,Xiaofang Qiu,Jingshan Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:199: 116997-116997 被引量:8
标识
DOI:10.1016/j.eswa.2022.116997
摘要

The relationship between spatial information of molecular topology and odor characteristics has received increasing attention from the academic community. Odor intensity (OI) prediction, as one of the most important topics in the olfactory systems (OS), has been thoroughly investigated in the past. Nonetheless, traditional methods have certain limitations as they usually require high-precision instruments and are time-consuming in collecting OI datasets. Here, we created a novel and efficient framework (POI-3DGCN) for OI prediction based on a three-dimensional graph convolutional network (3DGCN) model to overcome these challenges. Compared with other advanced models (RF, SVM, MLP, LSTM and GAT), the 3DGCN model exhibits significantly higher performance on the task of predicting OI. We confirmed that global pooling (aggregation), especially s e t 2 s e t , improves the predicted OI performance on monomer flavor datasets with sparser graph structures. More significantly, we found that the rotations of odor molecules in 3D space have the same topology, except for their 3D orientation, and the 3DGCN model predicts OI with has rotation equivariance, which also reflects the good robustness of this model. Consequently, the proposed POI-3DGCN model is likely to be considered reliable for evaluating the OI of monomer flavors, which lays a good foundation in the implementation of three-dimensionality to the field of deep learning olfaction. • 3DGCN-based default prediction model is proposed. • The contribution of atomic features to predicting the OI of monomer flavors in 3DGCN. • Global pooling based on iterative content-based attention improve model performance. • Application of monomer flavor data shows that our model outperforms existing model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lovexz完成签到,获得积分10
3秒前
科研通AI2S应助lovexz采纳,获得10
22秒前
科研通AI2S应助lovexz采纳,获得10
33秒前
隐形曼青应助lalalatiancai采纳,获得10
36秒前
里德完成签到 ,获得积分10
42秒前
49秒前
50秒前
lalalatiancai发布了新的文献求助10
56秒前
Shining_Wu完成签到,获得积分10
1分钟前
鸟鸟鸟应助科研通管家采纳,获得10
1分钟前
鸟鸟鸟应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
子月之路完成签到,获得积分10
2分钟前
科研通AI2S应助paperandpen采纳,获得30
2分钟前
liu发布了新的文献求助10
2分钟前
2分钟前
3分钟前
鸟鸟鸟应助科研通管家采纳,获得10
3分钟前
3分钟前
Hiraeth完成签到 ,获得积分10
3分钟前
研友_Lw7OvL发布了新的文献求助10
3分钟前
4分钟前
火的信仰发布了新的文献求助10
4分钟前
SciGPT应助小车同学采纳,获得10
4分钟前
华仔应助火的信仰采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
梅赛德斯奔驰完成签到,获得积分10
5分钟前
幽默的惮发布了新的文献求助30
5分钟前
善学以致用应助幽默的惮采纳,获得10
5分钟前
5分钟前
小车同学发布了新的文献求助10
5分钟前
6分钟前
6分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857299
求助须知:如何正确求助?哪些是违规求助? 3399721
关于积分的说明 10613312
捐赠科研通 3121961
什么是DOI,文献DOI怎么找? 1721139
邀请新用户注册赠送积分活动 828904
科研通“疑难数据库(出版商)”最低求助积分说明 777924