煅烧
光催化
异质结
三聚氰胺
材料科学
过氧化氢
氟化氢
催化作用
化学
化学工程
无机化学
有机化学
复合材料
光电子学
工程类
作者
Tong Wang,Wenhan Yang,Lu Chang,Hao Wang,Huan Wu,Jinrong Cao,Hua Fan,Jingquan Wang,Haitao Liu,Yunhu Hou,Ru Zhang,Zhimao Yang,Hao Zhu,Chuncai Kong
标识
DOI:10.1016/j.seppur.2021.120329
摘要
This work explored an effective treatment method for removing NO from simulated flue gas at normal temperature. We synthesized accordion-like MXene-derived TiO2@C coupled with g-C3N4 (TiO2@C/g-C3N4) via one-step calcination utilizing Ti3AlC2, fluoride salts and melamine as raw materials in CO2 atmosphere. One-step calcination process simultaneously achieved the etch of Al layers of Ti3AlC2 by molten fluoride salts, the generation of g-C3N4 with melamine as precursor and the oxidation of Ti3C2 by CO2. TiO2@C/g-C3N4 for photocatalytic activation of hydrogen peroxide (H2O2) had as high as 94.0% removal rate of NO at parts per million level in a normal temperature environment. This efficiency was 5.3 times and 8.0 times that of TiO2@C/g-C3N4 and H2O2 individually, due to the synergy between photocatalysis and H2O2 oxidation. Meantime, TiO2@C/g-C3N4 exhibited an enhanced performance compared with g-C3N4 (40.3%) and TiO2@C (64.1%) for Z-type heterojunction accelerating the separation of electron-hole pairs. The mechanism was proposed that Z-type TiO2@C/g-C3N4 heterojunction activated H2O2 under visible light to generate hydroxyl radical and superoxide radical for oxidation of NO.
科研通智能强力驱动
Strongly Powered by AbleSci AI