Fault diagnosis of robot joint based on BP neural network

断层(地质) 人工神经网络 机器人 接头(建筑物) 人工智能 计算机科学 采样(信号处理) 工程类 计算机视觉 滤波器(信号处理) 地质学 地震学 建筑工程
作者
Ming Hu,Jianguo Wu,Jing Yang,Lijian Zhang,Fan Yang
出处
期刊:Robotica [Cambridge University Press]
卷期号:40 (12): 4388-4404 被引量:9
标识
DOI:10.1017/s0263574722000984
摘要

Abstract Aiming at the problem of low accuracy of robot joint fault diagnosis, a fault diagnosis method of robot joint based on BP neural network is designed. In this paper, the UR10 robot is taken as the research object, and the end pose data of the robot are collected in real time. By injecting different joint errors and changing the sampling frequency, the joint fault database is collected and established, and the BP neural network is used for training to obtain the robot neural network fault diagnosis model. The fault diagnosis model can output the joint fault of the input end pose data. And we analyzed the influence of different joint angle errors and different training sets on the accuracy of joint fault diagnosis of the robot. The results show that when the sampling frequency is 250 Hz, the simulation result of joint fault diagnosis accuracy with the fault degree of 0.5° is 99.17%, and the experimental result is 97.87%. Compared with traditional data-driven methods, it has higher accuracy and diagnostic efficiency, and compared with existing machine learning methods, it also achieves a high accuracy while reducing the network complexity. The effectiveness of the BP neural network robot joint fault diagnosis method is verified by experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dyc发布了新的文献求助10
刚刚
suyu发布了新的文献求助50
刚刚
2秒前
fffff发布了新的文献求助10
3秒前
qq158014169完成签到 ,获得积分10
4秒前
皮皮发布了新的文献求助10
4秒前
4秒前
dyc完成签到,获得积分10
5秒前
fabea完成签到,获得积分10
5秒前
Minjalee完成签到,获得积分0
6秒前
觅海发布了新的文献求助10
7秒前
充电宝应助无奈的小松鼠采纳,获得10
8秒前
英姑应助无奈的小松鼠采纳,获得10
8秒前
Lucas应助无奈的小松鼠采纳,获得10
8秒前
CodeCraft应助无奈的小松鼠采纳,获得10
8秒前
8秒前
科目三应助无奈的小松鼠采纳,获得10
8秒前
田様应助无奈的小松鼠采纳,获得10
8秒前
8秒前
8秒前
8秒前
zzh发布了新的文献求助10
9秒前
cwq921发布了新的文献求助10
12秒前
14秒前
木之尹完成签到,获得积分10
17秒前
天天快乐应助小1230987采纳,获得10
18秒前
星辰大海应助同志你好采纳,获得10
18秒前
sxc发布了新的文献求助10
20秒前
勤奋雨完成签到,获得积分10
21秒前
SamuelLiu完成签到,获得积分10
22秒前
CodeCraft应助专注邴采纳,获得10
22秒前
mcw完成签到 ,获得积分10
22秒前
24秒前
ccalvintan完成签到,获得积分10
24秒前
Owen应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
天下无双完成签到,获得积分10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803508
求助须知:如何正确求助?哪些是违规求助? 3348396
关于积分的说明 10338293
捐赠科研通 3064441
什么是DOI,文献DOI怎么找? 1682571
邀请新用户注册赠送积分活动 808307
科研通“疑难数据库(出版商)”最低求助积分说明 764034