Document Recapture Detection Based on a Unified Distortion Model of Halftone Cells

计算机科学 水准点(测量) 失真(音乐) 中间调 边距(机器学习) 人工智能 上传 图像(数学) 数据挖掘 模式识别(心理学) 计算机视觉 机器学习 计算机网络 放大器 大地测量学 带宽(计算) 地理 操作系统
作者
Zhaoxu Hu,Changsheng Chen,Wai Ho Mow,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 2800-2815 被引量:6
标识
DOI:10.1109/tifs.2022.3192999
摘要

In recent years, digital copies of paper documents are used widely with the prevalence of various online services. As a result, it is critical to validate the authenticity of the uploaded document images to protect against attacks from malicious users. Out of various types of attacks, the recapture attack (by reprinting and recapturing) is effective in concealing the trace of document forgeries. However, detecting the recaptured document images is challenging. To address this problem, we first study the halftone cell distortion introduced in both the genuine and recaptured document images. Based on our study, a unified model that characterizes the halftone cell distortion (e.g., errors in size and displacement) is then proposed for accurate estimation of the distortion parameters. The statistics of the estimated parameters are then exploited in a hypothesis testing framework to detect the recaptured document images. The questioned document image can be authenticated by testing against the null hypothesis, i.e., the image is a genuine sample. To evaluate the performance of the proposed approach under different application scenarios, extensive experiments are conducted with different prior knowledge of printers (known printer model, known printing technique, and In-The-Wild (unknown printing device and document contents)). The experiment results show that the proposed approach outperforms the data-driven benchmark approaches by a significant margin. Specifically, under the In-The-Wild experiment protocol, the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of the proposed approach is above 0.87 while the AUC of the benchmark approaches (even some utilize both genuine and recaptured samples) degrades to less than 0.77.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来自3602完成签到,获得积分10
1秒前
1秒前
5秒前
默默发布了新的文献求助10
10秒前
小二郎应助breezes采纳,获得10
11秒前
11秒前
abb完成签到,获得积分10
11秒前
杨好圆完成签到,获得积分10
19秒前
迷人八宝粥完成签到,获得积分10
22秒前
23秒前
自然的如南完成签到,获得积分10
26秒前
邱小姐发布了新的文献求助10
27秒前
AJJACKY完成签到,获得积分10
28秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得30
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
在水一方应助科研通管家采纳,获得10
29秒前
29秒前
自由溪灵完成签到,获得积分10
33秒前
852应助啦啦啦啦la采纳,获得10
36秒前
37秒前
39秒前
轻松诗霜完成签到 ,获得积分10
39秒前
迷人的Jack发布了新的文献求助10
40秒前
跳跃的电话完成签到,获得积分10
41秒前
yu完成签到 ,获得积分10
43秒前
孙廷宇给孙廷宇的求助进行了留言
44秒前
动漫大师发布了新的文献求助30
45秒前
shouyu29完成签到,获得积分0
45秒前
Jasmine Mai完成签到,获得积分10
45秒前
南桑完成签到 ,获得积分10
45秒前
Luna完成签到 ,获得积分10
50秒前
51秒前
华仔应助123keyan采纳,获得10
56秒前
dkyt发布了新的文献求助10
58秒前
赘婿应助Lea采纳,获得10
58秒前
1分钟前
tcy完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781324
求助须知:如何正确求助?哪些是违规求助? 3326844
关于积分的说明 10228534
捐赠科研通 3041858
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751