Detecting fake news on Chinese social media based on hybrid feature fusion method

计算机科学 社会化媒体 卷积神经网络 特征(语言学) 人工智能 图像(数学) 假新闻 文字袋模型 代表(政治) 模式识别(心理学) 机器学习 情报检索 万维网 互联网隐私 哲学 语言学 政治 政治学 法学
作者
Haizhou Wang,Sen Wang,YuHu Han
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:208: 118111-118111 被引量:11
标识
DOI:10.1016/j.eswa.2022.118111
摘要

With the rapid growth of the scale of social media information, it is getting more and more difficult for social media to detect fake news by using manual review. The spread of fake news may misguide the public, cause social panic, and even lead to violence, which could be avoided by using early detection technology to timely identify fake news on social media. Since fake news is often deliberately designed to attract attention, it is difficult for mongers to provide pictures that match the fabricated stories. However, most of existing multi-modal solutions only use the information of images and text, but do not take into account the correlation between them, which limits the effect of model detection effect. In this paper, we proposed a novel Fake News Detection Framework (FNDF) in Sina Weibo based on hybrid feature fusion method. Specifically, a total of 16 features from text, images and users are extracted to distinguish fake news. Moreover, we extract image-text correlation between text and images. Then, a new deep neural network model called Fake News Net (FNN) is built to implement the detection of fake news, which makes use of a pre-training model named Enhanced Representation through Knowledge Integration (ERNIE), a convolution network named Visual Geometry Group (VGG-19), and a Back Propagation (BP) neural network. We validated it on a publicly available dataset, which shows that the F1-score of the FNN model reaches 95.90%, outperforming the state-of-the-art methods by 3.08%. The ablation experiment also proves that the correlation between images and texts increased the F1-score of the model by 3.15%. And the data balancing experiments show that our model still keeps outstanding detection performance when there is less fake news compared to real news, which is closer to the real-world scenario. The research in this paper provides theoretical methods and research ideas for the detection of fake news on social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
SYLH应助杭康采纳,获得10
1秒前
1秒前
乐乐发布了新的文献求助10
1秒前
CodeCraft应助zhang005on采纳,获得10
2秒前
2秒前
2秒前
3秒前
多宝鱼儿完成签到 ,获得积分20
3秒前
SMG完成签到 ,获得积分10
3秒前
4秒前
执着的招牌完成签到,获得积分10
4秒前
目眩发布了新的文献求助20
4秒前
lyw完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
张世豪发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
今后应助兮兮采纳,获得10
7秒前
_是小满发布了新的文献求助10
7秒前
可爱的函函应助IY采纳,获得30
7秒前
Lucky完成签到,获得积分10
8秒前
ZD发布了新的文献求助10
8秒前
11111完成签到,获得积分10
8秒前
8秒前
梅川秋裤发布了新的文献求助10
8秒前
yyyyyy完成签到 ,获得积分10
8秒前
9秒前
曾经的妍完成签到,获得积分10
9秒前
9秒前
萌萌雨发布了新的文献求助10
9秒前
SciGPT应助www采纳,获得10
9秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881