Novel classification and risk model based on ferroptosis‐related lncRNAs to predict oncologic outcomes for gastric cancer patients

列线图 癌症 肿瘤科 恶性肿瘤 医学 病态的 弗雷明翰风险评分 内科学 生物信息学 生物 疾病
作者
Qingfang Yue,Jun Bai,Fei Wang,Fei Xue,Lianxiang Li,Xianglong Duan
出处
期刊:Journal of Biochemical and Molecular Toxicology [Wiley]
卷期号:36 (7) 被引量:7
标识
DOI:10.1002/jbt.23052
摘要

Abstract Gastric cancer (GC) is a highly heterogeneous malignancy, characterized by high mortality and poor prognosis. Ferroptosis is a newly defined nonapoptotic programmed cell death mechanism that has been implicated in the development of various pathological conditions. We aimed to identify ferroptosis‐related long noncoding RNA (lncRNAs) that might be used to predict GC prognosis. The data were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus database. Two subtypes, C1 and C2, were identified, which had significant variations in prognosis and immune cell infiltrations. Differentially expressed genes between the subtypes were found to be involved in multiple tumor‐associated pathways. Subsequently, a training dataset and a testing dataset were created from the TCGA dataset. A predictive model for GC patients based on six ferroptosis‐related lncRNAs (including STX18‐AS1, MIR99AHG, LINC01197, LINC00968, LINC00865, and LEF1‐AS1) was developed. The model could stratify patients into a high‐ and low‐risk group, showing good predictive performance. The testing dataset, entire TCGA dataset, and GSE62254 cohort both confirmed the predictive value of the model. Compared to the clinical parameters (including gender, age, and grade), the risk model was an independent risk factor for GC patients. Moreover, a nomogram (containing our risk score model and clinical parameters) was constructed, which might provide great potential to improve prediction accuracy. Moreover, the single‐sample gene set enrichment analysis revealed that the high‐risk group was linked to various signaling pathways involved in the regulation of GC progression. Conclusively, a novel classification and risk model based on ferroptosis‐related lncRNAs that can predict oncologic outcomes for GC patients has been developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张皓123完成签到,获得积分10
刚刚
刚刚
NexusExplorer应助开朗的忆梅采纳,获得10
1秒前
mnwkwcj发布了新的文献求助10
2秒前
王小梦完成签到,获得积分10
3秒前
LIU关注了科研通微信公众号
3秒前
西灵壹发布了新的文献求助10
3秒前
内向绿凝发布了新的文献求助10
3秒前
hrh发布了新的文献求助10
4秒前
归尘应助如7而至采纳,获得10
4秒前
4秒前
wind发布了新的文献求助10
5秒前
所所应助王小梦采纳,获得10
6秒前
进取拼搏发布了新的文献求助10
7秒前
7秒前
亮仔完成签到,获得积分10
8秒前
lxy完成签到,获得积分10
9秒前
北岸初晴完成签到 ,获得积分10
10秒前
领导范儿应助卡戎529采纳,获得10
10秒前
失眠迎松完成签到,获得积分10
10秒前
八二年葡萄糖完成签到,获得积分10
11秒前
赘婿应助BPM采纳,获得10
11秒前
GongSyi发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
Chen完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
Lars完成签到,获得积分10
16秒前
17秒前
18秒前
23582发布了新的文献求助10
18秒前
强强完成签到,获得积分10
18秒前
19秒前
xxxrngsyy发布了新的文献求助10
19秒前
科研通AI2S应助geng采纳,获得10
19秒前
jin发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4005993
求助须知:如何正确求助?哪些是违规求助? 3545917
关于积分的说明 11294361
捐赠科研通 3281886
什么是DOI,文献DOI怎么找? 1809798
邀请新用户注册赠送积分活动 885568
科研通“疑难数据库(出版商)”最低求助积分说明 811048