Comparison of Optimal Control Techniques for Building Energy Management

模型预测控制 强化学习 水准点(测量) 最优控制 计算机科学 超参数 控制(管理) 时间范围 能源管理 控制工程 能量(信号处理) 数学优化 工程类 机器学习 人工智能 数学 大地测量学 地理 统计
作者
Javier Arroyo,Fred Spiessens,Lieve Helsen
出处
期刊:Frontiers in Built Environment [Frontiers Media]
卷期号:8 被引量:14
标识
DOI:10.3389/fbuil.2022.849754
摘要

Optimal controllers can enhance buildings’ energy efficiency by taking forecast and uncertainties into account (e.g., weather and occupancy). This practice results in energy savings by making better use of energy systems within the buildings. Even though the benefits of advanced optimal controllers have been demonstrated in several research studies and some demonstration cases, the adoption of these techniques in the built environment remains somewhat limited. One of the main reasons is that these novel control algorithms continue to be evaluated individually. This hampers the identification of best practices to deploy optimal control widely in the building sector. This paper implements and compares variations of model predictive control (MPC), reinforcement learning (RL), and reinforced model predictive control (RL-MPC) in the same optimal control problem for building energy management. Particularly, variations of the controllers’ hyperparameters like the control step, the prediction horizon, the state-action spaces, the learning algorithm, or the network architecture of the value function are investigated. The building optimization testing (BOPTEST) framework is used as the simulation benchmark to carry out the study as it offers standardized testing scenarios. The results reveal that, contrary to what is stated in previous literature, model-free RL approaches poorly perform when tested in building environments with realistic system dynamics. Even when a model is available and simulation-based RL can be implemented, MPC outperforms RL for an equivalent formulation of the optimal control problem. The performance gap between both controllers reduces when using the RL-MPC algorithm that merges elements from both families of methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曲光彩发布了新的文献求助10
2秒前
一行发布了新的文献求助10
2秒前
芋头完成签到,获得积分10
2秒前
紫曦完成签到,获得积分20
3秒前
bkagyin应助Mp4采纳,获得10
3秒前
4秒前
Nathan发布了新的文献求助10
4秒前
4秒前
starry001发布了新的文献求助10
4秒前
5秒前
Diego发布了新的文献求助10
5秒前
wmhappy完成签到,获得积分10
5秒前
6秒前
隐形曼青应助悦耳的初之采纳,获得10
6秒前
6秒前
CodeCraft应助机灵乐驹采纳,获得10
7秒前
7秒前
独角兽发布了新的文献求助10
7秒前
7秒前
8秒前
大模型应助震动的觅露采纳,获得10
8秒前
8秒前
blue发布了新的文献求助10
8秒前
深情安青应助称心如意采纳,获得10
8秒前
慕青应助nomad采纳,获得30
8秒前
阿珍完成签到,获得积分10
8秒前
8秒前
传奇3应助曲光彩采纳,获得10
9秒前
10秒前
11秒前
务实幻露完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
jasur发布了新的文献求助10
11秒前
lilia发布了新的文献求助20
11秒前
跳跃尔容发布了新的文献求助10
12秒前
12秒前
哇咔咔完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835772
求助须知:如何正确求助?哪些是违规求助? 3378123
关于积分的说明 10502581
捐赠科研通 3097717
什么是DOI,文献DOI怎么找? 1706000
邀请新用户注册赠送积分活动 820776
科研通“疑难数据库(出版商)”最低求助积分说明 772274