Cross-modal alignment with graph reasoning for image-text retrieval

计算机科学 人工智能 情态动词 图形 模式识别(心理学) 自然语言处理 特征(语言学) 情报检索 理论计算机科学 语言学 哲学 化学 高分子化学
作者
Zheng Cui,Yongli Hu,Yanfeng Sun,Junbin Gao,Baocai Yin
出处
期刊:Multimedia Tools and Applications [Springer Science+Business Media]
卷期号:81 (17): 23615-23632 被引量:3
标识
DOI:10.1007/s11042-022-12444-8
摘要

Image-text retrieval task has received a lot of attention in the modern research field of artificial intelligence. It still remains challenging since image and text are heterogeneous cross-modal data. The key issue of image-text retrieval is how to learn a common feature space while semantic correspondence between image and text remains. Existing works cannot gain fine cross-modal feature representation because the semantic relation between local features is not effectively utilized and the noise information is not suppressed. In order to address these issues, we propose a Cross-modal Alignment with Graph Reasoning (CAGR) model, in which the refined cross-modal features in the common feature space are learned and then a fine-grained cross-modal alignment method is implemented. Specifically, we introduce a graph reasoning module to explore semantic connection for local elements in each modality and measure their importance by self-attention mechanism. In a multi-step reasoning manner, the visual semantic graph and textual semantic graph can be effectively learned and the refined visual and textual features can be obtained. Finally, to measure the similarity between image and text, a novel alignment approach named cross-modal attentional fine-grained alignment is used to compute similarity score between two sets of features. Our model achieves the competitive performance compared with the state-of-the-art methods on Flickr30K dataset and MS-COCO dataset. Extensive experiments demonstrate the effectiveness of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuyi发布了新的文献求助10
1秒前
皮皮团完成签到 ,获得积分10
2秒前
cugwzr完成签到,获得积分10
2秒前
Hello应助Ryan采纳,获得10
3秒前
顾瞻完成签到,获得积分10
4秒前
令散内方完成签到,获得积分10
4秒前
加减乘除发布了新的文献求助10
6秒前
842413119完成签到,获得积分10
7秒前
科研通AI5应助顾瞻采纳,获得10
11秒前
14秒前
14秒前
轩辕自中完成签到,获得积分10
17秒前
19秒前
哈哈哈发布了新的文献求助10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
20秒前
阿飘应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
Rage_Wang应助科研通管家采纳,获得50
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
hehehehe完成签到,获得积分10
21秒前
21秒前
碎碎念s完成签到,获得积分10
22秒前
22秒前
23秒前
CipherSage应助幸福的雪枫采纳,获得10
25秒前
25秒前
26秒前
月亮发布了新的文献求助10
27秒前
28秒前
小费发布了新的文献求助50
31秒前
霍师傅发布了新的文献求助10
32秒前
无花果应助小博士328采纳,获得10
34秒前
远方发布了新的文献求助10
34秒前
lalala发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339