杰纳斯
膜
选择性
离子交换
化学
离子
化学工程
材料科学
纳米技术
有机化学
生物化学
工程类
催化作用
作者
Wenguang Wang,Yanqiu Zhang,Xiaobin Yang,Haixiang Sun,Yadong Wu,Lu Shao
出处
期刊:Engineering
[Elsevier]
日期:2022-01-25
卷期号:25: 204-213
被引量:54
标识
DOI:10.1016/j.eng.2021.09.020
摘要
Monovalent cation exchange membranes (M-CEMs) have been extensively applied in environmental remediation and energy harvesting such as the extraction of Na+ or Li+ from brine and seawater. However, owing to the limitations of membrane structures and materials, M-CEMs have a low perm-selectivity issue. Herein, we proposed a facile approach to construct a novel M-CEM with a Janus-charged structure, consisting of a positively-charged trimesic acid/polyethylenimine surface thin layer and a negatively charged commercial cation exchange membrane (CEM). Selectrodialysis results indicated that the Janus-charged M-CEMs could effectively suppress the migration of anions, which often occurred in porous CEMs, thereby enabling the novel Janus-charged M-CEMs to possess high perm-selectivity and high total cation fluxes. Compared with state-of-the-art M-CEMs, the Janus-charged M-CEM exhibited the highest perm-selectivity of 145.77 for Na+/Mg2+ beyond the contemporary “Upper Bound” plot as well as the excellent perm-selectivity of 14.11 for Li+/Mg2+, indicating its great potentials in ion separation. This study can provide novel insights into the design of Janus-charged M-CEMs for ion separation in diverse environmental and energy applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI