Precision agriculture adoption and technical efficiency: An analysis of sugarcane farms in Brazil

农业 生产(经济) 农业科学 农业经济学 持续性 业务 早期采用者 经济 营销 地理 环境科学 微观经济学 生态学 生物 考古
作者
Marcelo José Carrer,Hildo Meirelles de Souza Filho,Marcela de Mello Brandão Vinholis,Carlos Ivan Mozambani
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:177: 121510-121510 被引量:50
标识
DOI:10.1016/j.techfore.2022.121510
摘要

Precision Agriculture Technologies (PATs) are at the core of the fourth revolution in farming technology, also called Agriculture 4.0. This study evaluates the determinants of PATs adoption and its impacts on technical efficiency (TE) and technology gap ratio (TGR) of sugarcane farms in the state of São Paulo, Brazil. A selectivity correction model for stochastic frontiers is combined with a metafrontier production function approach to estimate the role of a set of determinants of PATs adoption and its impacts on TE and TGR. In person interviews with 131 sugarcane farmers provided cross-sectional farm level data from the 2018/19 crop year. The estimates of a sample selection equation showed that farming size, farmer's schooling and technical assistance positively affect PATs adoption by sugarcane farmers. Estimates of stochastic production frontiers (SPFs) and metafrontier revealed that the average of the TE and TGR scores of adopters are higher than those of non-adopters. The managerial gaps (TE) between adopters and non-adopters are considerably wider than their technology gaps (TGR). The adoption of PATs subsidizes farmers decision-making process which increased the efficiency in inputs use, an important issue for economic and environmental sustainability in sugarcane farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇气的逊发布了新的文献求助30
刚刚
小玉应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
浅尝离白完成签到,获得积分0
2秒前
seven发布了新的文献求助10
2秒前
2秒前
Kirito应助吴未采纳,获得10
5秒前
mengli完成签到 ,获得积分10
6秒前
大气乐儿发布了新的文献求助10
6秒前
7秒前
言言右发布了新的文献求助10
8秒前
清茶旧友完成签到,获得积分10
10秒前
11秒前
12秒前
小蘑菇应助ooo娜采纳,获得10
13秒前
15秒前
Erislastem发布了新的文献求助10
16秒前
17秒前
17秒前
安详夏彤发布了新的文献求助10
20秒前
jijibao发布了新的文献求助10
21秒前
21秒前
22秒前
斯文的青枫完成签到,获得积分20
23秒前
Lucas应助wanghuihui采纳,获得10
25秒前
研友_851KE8发布了新的文献求助10
26秒前
zjt完成签到,获得积分10
26秒前
26秒前
包宇完成签到,获得积分20
27秒前
包宇发布了新的文献求助10
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836319
求助须知:如何正确求助?哪些是违规求助? 3378629
关于积分的说明 10505444
捐赠科研通 3098281
什么是DOI,文献DOI怎么找? 1706409
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772413