Describe Molecules by a Heterogeneous Graph Neural Network with Transformer-like Attention for Supervised Property Predictions

分子图 计算机科学 人工神经网络 理论计算机科学 图形 财产(哲学) 同种类的 人工智能 拓扑(电路) 源代码 变压器 机器学习 数学 程序设计语言 工程类 哲学 认识论 组合数学 电压 电气工程
作者
Daiguo Deng,Zengrong Lei,Xiaobin Hong,Ruochi Zhang,Fengfeng Zhou
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (4): 3713-3721 被引量:16
标识
DOI:10.1021/acsomega.1c06389
摘要

Machine learning and deep learning have facilitated various successful studies of molecular property predictions. The rapid development of natural language processing and graph neural network (GNN) further pushed the state-of-the-art prediction performance of molecular property to a new level. A geometric graph could describe a molecular structure with atoms as the nodes and bonds as the edges. Therefore, a graph neural network may be trained to better represent a molecular structure. The existing GNNs assumed homogeneous types of atoms and bonds, which may miss important information between different types of atoms or bonds. This study represented a molecule using a heterogeneous graph neural network (MolHGT), in which there were different types of nodes and different types of edges. A transformer reading function of virtual nodes was proposed to aggregate all the nodes, and a molecule graph may be represented from the hidden states of the virtual nodes. This proof-of-principle study demonstrated that the proposed MolHGT network improved the existing studies of molecular property predictions. The source code and the training/validation/test splitting details are available at https://github.com/zhangruochi/Mol-HGT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
人间沼泽发布了新的文献求助10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
北风应助科研通管家采纳,获得10
1秒前
1秒前
xzy998应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
万能图书馆应助科研通管家采纳,获得150
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
领导范儿应助小施采纳,获得10
2秒前
xzy998应助科研通管家采纳,获得30
2秒前
大个应助科研通管家采纳,获得10
2秒前
3秒前
HUUU发布了新的文献求助10
3秒前
zsy完成签到,获得积分10
3秒前
3秒前
spz发布了新的文献求助30
3秒前
3秒前
Akim应助科研小狗采纳,获得10
4秒前
开心尔芙完成签到,获得积分10
4秒前
5秒前
斯文败类应助卓梨采纳,获得30
5秒前
科研小白发布了新的文献求助10
6秒前
6秒前
6秒前
顾矜应助米夏埃尔采纳,获得10
6秒前
AA发布了新的文献求助10
7秒前
7秒前
SciGPT应助洛尘采纳,获得10
8秒前
北海应助黄徐采纳,获得10
9秒前
猪猪hero发布了新的文献求助30
9秒前
9秒前
bc应助FUNG采纳,获得30
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791796
求助须知:如何正确求助?哪些是违规求助? 3336103
关于积分的说明 10278863
捐赠科研通 3052741
什么是DOI,文献DOI怎么找? 1675319
邀请新用户注册赠送积分活动 803360
科研通“疑难数据库(出版商)”最低求助积分说明 761178