AlphaFold2-aware protein–DNA binding site prediction using graph transformer

计算机科学 图形 变压器 马修斯相关系数 DNA结合位点 计算生物学 机器学习 人工智能 数据挖掘 理论计算机科学 生物 基因 遗传学 工程类 电压 基因表达 电气工程 发起人 支持向量机
作者
Qianmu Yuan,Sheng Chen,Jiahua Rao,Shuangjia Zheng,Huiying Zhao,Yuedong Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:43
标识
DOI:10.1093/bib/bbab564
摘要

Protein-DNA interactions play crucial roles in the biological systems, and identifying protein-DNA binding sites is the first step for mechanistic understanding of various biological activities (such as transcription and repair) and designing novel drugs. How to accurately identify DNA-binding residues from only protein sequence remains a challenging task. Currently, most existing sequence-based methods only consider contextual features of the sequential neighbors, which are limited to capture spatial information. Based on the recent breakthrough in protein structure prediction by AlphaFold2, we propose an accurate predictor, GraphSite, for identifying DNA-binding residues based on the structural models predicted by AlphaFold2. Here, we convert the binding site prediction problem into a graph node classification task and employ a transformer-based variant model to take the protein structural information into account. By leveraging predicted protein structures and graph transformer, GraphSite substantially improves over the latest sequence-based and structure-based methods. The algorithm is further confirmed on the independent test set of 181 proteins, where GraphSite surpasses the state-of-the-art structure-based method by 16.4% in area under the precision-recall curve and 11.2% in Matthews correlation coefficient, respectively. We provide the datasets, the predicted structures and the source codes along with the pre-trained models of GraphSite at https://github.com/biomed-AI/GraphSite. The GraphSite web server is freely available at https://biomed.nscc-gz.cn/apps/GraphSite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
南初完成签到,获得积分10
1秒前
1秒前
丘比特应助畅快行云采纳,获得10
2秒前
共享精神应助ju00采纳,获得10
2秒前
2秒前
天天快乐应助认真子默采纳,获得10
2秒前
一期一会完成签到,获得积分10
2秒前
cc完成签到,获得积分10
2秒前
ww发布了新的文献求助30
2秒前
DaDA完成签到 ,获得积分10
3秒前
3秒前
李爱国应助kuku科研仔采纳,获得10
4秒前
zhouleiwang发布了新的文献求助10
4秒前
4秒前
SciGPT应助Sun采纳,获得10
4秒前
充电宝应助gehao采纳,获得10
5秒前
852应助IVY采纳,获得10
6秒前
6秒前
昏睡的蟠桃应助GEOPYJ采纳,获得200
6秒前
6秒前
乐观的中心完成签到,获得积分10
7秒前
7秒前
西灵壹发布了新的文献求助10
7秒前
帕丁顿发布了新的文献求助40
7秒前
7秒前
库库写论文完成签到,获得积分10
8秒前
一杯晨汁完成签到 ,获得积分10
8秒前
8秒前
小许完成签到 ,获得积分10
8秒前
hello发布了新的文献求助10
8秒前
Owen应助研友_MLJmo8采纳,获得10
9秒前
9秒前
9秒前
烂漫臻发布了新的文献求助10
9秒前
小云雀缺缺岛完成签到,获得积分10
9秒前
Kevin发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831