Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets

计算机科学 可扩展性 地图集(解剖学) 对抗制 领域(数学分析) 数据集成 航程(航空) 翻译(生物学) 人工智能 数据挖掘 生物 数据库 复合材料 数学分析 基因 信使核糖核酸 数学 材料科学 生物化学 古生物学
作者
Jia Zhao,Gefei Wang,Jingsi Ming,Zhixiang Lin,Yang Wang,Snigdha Agarwal,Aditi Agrawal,Ahmad Al‐Moujahed,Alina Alam,Megan A. Albertelli,Paul Allegakoen,Thomas H. Ambrosi,Jane Antony,Steven E. Artandi,Fabienne Aujard,Kyle Awayan,Ankit S. Baghel,Isaac Bakerman,Trygve E. Bakken,Jalal Baruni,Philip A. Beachy,Biter Bilen,Olga Botvinnik,Scott D. Boyd,Deviana Burhan,Kerriann M. Casey,Charles K. F. Chan,Charles Chang,Stephen Chang,Chen Ming,Michael F. Clarke,Sheela Crasta,Rebecca N. Culver,Jessica D’Addabbo,Spyros Darmanis,Roozbeh Dehghannasiri,Song‐Lin Ding,Connor V. Duffy,Jacques Epelbaum,F. Hernán Espinoza,Camille Ezran,Jean Farup,James E. Ferrell,Hannah K. Frank,Margaret T. Fuller,Astrid Gillich,Elias Godoy,Dita Gratzinger,Lisbeth A. Guethlein,Yan Hang,Kazuteru Hasegawa,Rebecca D. Hodge,Malachia Hoover,Franklin W. Huang,Kerwyn Casey Huang,Shelly Huynh,Taichi Isobe,Carly Israel,SoRi Jang,Qiuyu Jing,Robert C. Jones,Jengmin Kang,Caitlin J. Karanewsky,Jim Karkanias,Justus M. Kebschull,Aaron M. Kershner,Lily Kim,Seung K. Kim,E. Christopher Kirk,Winston Koh,Silvana Konermann,William Kong,Mark A. Krasnow,Christin S. Kuo,Corinne Lautier,Song Eun Lee,Ed S. Lein,Rebecca Lewis,Peng Li,Shengda Lin,Shixuan Liu,Yin Liu,Gabriel B. Loeb,Jonathan Z. Long,Wan-Jin Lu,Katherine L. Lucot,Liqun Luo,Aaron McGeever,Ross J. Metzger,Jingsi Ming,Tom Montine,Antoine de Morrée,Maurizio Morri,Karim Mrouj,Shravani Mukherjee,Ahmad N. Nabhan,Saba Nafees,Norma Neff,Patrick Neuhöfer,Patricia K. Nguyen,Jennifer Okamoto,Julia Olivieri,Youcef Ouadah,Honor Paine,Peter Parham,Jozeph L. Pendleton,Lolita Penland,Martine Perret,Angela Oliveira Pisco,Zhen Qi,Stephen R. Quake,Ute Radespiel,Thomas A. Rando,Hajanirina Noëline Ravelonjanahary,Andriamahery Razafindrakoto,Julia Salzman,Nicholas Schaum,Robert Schopler,Bronwyn Scott,Liza J. Shapiro,Ho‐Su Sin,Rahul Sinha,Rene Sit,Geoff Stanley,Lubert Stryer,Varun Ramanan Subramaniam,Aditi Swarup,Weilun Tan,Alexander J. Tarashansky,Aris Taychameekiatchai,Jérémy Terrien,Kyle J. Travaglini,Andoni Urtasun,Sivakamasundari,Avin Veerakumar,Venkata Naga Pranathi Vemuri,Jean‐Michel Verdier,Iwijn De Vlaminck,Douglas Vollrath,Bo Wang,Bruce Wang,Gefei Wang,Michael F. Z. Wang,Sheng Wang,James T. Webber,H Weinstein,Irving L. Weissman,Amanda L. Wiggenhorn,Cathy V. Williams,Patricia C. Wright,Albert Y. Wu,Angela Ruohao Wu,Tony Wyss‐Coray,Bao Xiang,Yan Jia,Can Yang,Jinxurong Yang,Anne D. Yoder,Brian Yu,Andrea R. Yung,Yue Zhang,Jia Zhao,Zicheng Zhao,Angela Ruohao Wu,Can Yang
出处
期刊:Nature Computational Science [Nature Portfolio]
卷期号:2 (5): 317-330 被引量:26
标识
DOI:10.1038/s43588-022-00251-y
摘要

The rapid emergence of large-scale atlas-level single-cell RNA-seq datasets presents remarkable opportunities for broad and deep biological investigations through integrative analyses. However, harmonizing such datasets requires integration approaches to be not only computationally scalable, but also capable of preserving a wide range of fine-grained cell populations. We have created Portal, a unified framework of adversarial domain translation to learn harmonized representations of datasets. When compared to other state-of-the-art methods, Portal achieves better performance for preserving biological variation during integration, while achieving the integration of millions of cells, in minutes, with low memory consumption. We show that Portal is widely applicable to integrating datasets across different samples, platforms and data types. We also apply Portal to the integration of cross-species datasets with limited shared information among them, elucidating biological insights into the similarities and divergences in the spermatogenesis process among mouse, macaque and human. An adversarial domain translation framework is presented for scalable integration of single-cell atlases across samples, technical platforms, data modalities and species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
resonliu0827完成签到,获得积分10
2秒前
健忘的路人完成签到 ,获得积分10
3秒前
这位同学不知道叫什么好完成签到,获得积分20
4秒前
5秒前
战神林北完成签到,获得积分10
5秒前
Orange应助饭小团采纳,获得10
5秒前
LLL完成签到 ,获得积分10
6秒前
念辞完成签到,获得积分10
6秒前
科研通AI5应助感念采纳,获得10
7秒前
科研通AI5应助木子木采纳,获得10
7秒前
科研通AI5应助张继妖采纳,获得10
12秒前
科研通AI5应助Ytgl采纳,获得10
17秒前
17秒前
20秒前
嘉禾望岗完成签到,获得积分20
21秒前
glacier发布了新的文献求助10
23秒前
感念发布了新的文献求助10
24秒前
29秒前
32秒前
Ying发布了新的文献求助10
33秒前
科研通AI5应助小猫多鱼采纳,获得10
35秒前
木子木发布了新的文献求助10
36秒前
田様应助阿浮采纳,获得10
38秒前
41秒前
42秒前
44秒前
张继妖发布了新的文献求助10
47秒前
乐乐应助毛毛采纳,获得10
49秒前
cc发布了新的文献求助70
49秒前
Koi关闭了Koi文献求助
49秒前
文艺水风发布了新的文献求助10
49秒前
niceweiwei发布了新的文献求助10
49秒前
lzc完成签到,获得积分10
50秒前
乐乐应助黑米粥采纳,获得10
51秒前
乐乐应助黑米粥采纳,获得10
51秒前
今天只做一件事应助黑米粥采纳,获得150
51秒前
乐乐应助黑米粥采纳,获得10
51秒前
Rye227应助黑米粥采纳,获得10
51秒前
CyrusSo524应助黑米粥采纳,获得200
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648