已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image Segmentation of a Sewer Based on Deep Learning

卷积神经网络 深度学习 人工智能 管道(软件) 分割 计算机科学 人工神经网络 领域(数学) 图像分割 模式识别(心理学) 图像(数学) 管道运输 像素 计算机视觉 工程类 数学 环境工程 纯数学 程序设计语言
作者
Min He,Qinnan Zhao,Huan-Huan Gao,Xinying Zhang,En-Min Zhou
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 6634-6634 被引量:4
标识
DOI:10.3390/su14116634
摘要

An accurate assessment of the type and extent of sewer damage is an important prerequisite for maintenance and repair. At present, distinguishing drainage pipe defect types in the engineering field mainly relies on the human eye, which is time consuming, labor intensive, and subjective. Some studies have used deep learning to classify the types of pipe defects, but this method can only identify one main pipe defect. However, sometimes a combination of defects, such as corrosion and precipitation on a section of pipe wall, can be classified as one category by picture classification, which is significantly different from the reality. Furthermore, the deep learning method for defect classification is unable to pinpoint the precise location and severity of a defect or estimate the number of flaws and the cost of maintenance and repair. Therefore, an image segmentation method based on deep convolutional neural networks is proposed to achieve pixel-level image segmentation of defect regions while classifying pipe defects. Compared with the deep learning network for defect classification, it can segment a variety of defects and reduce the number of samples, which is convenient for defect measurement. First, the image defect locations of seven typical defects were manually labeled to create the dataset. Then, a model based on the SegNet network was used to label defect areas automatically in an image. The pipeline image dataset was used to test the previously trained model using the CamVid dataset. Finally, the model was applied to drainage pipe network images that were provided by periscope and closed-circuit television inspection cameras, and the pixel accuracy of image segmentation reached 80%. From the results, it can be concluded that image segmentation and annotation technology based on deep learning is applicable to sewer defect detection. The identification results of pipeline defects were accurate. The SegNet model is a reliable method for image analysis of pipeline defects, which can accurately evaluate the type and degree of sewer damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助淡淡远锋采纳,获得10
2秒前
4秒前
Ava应助荔枝采纳,获得10
4秒前
传奇3应助舒适路人采纳,获得10
5秒前
辛勤石头发布了新的文献求助10
6秒前
6秒前
meredith0571完成签到,获得积分10
8秒前
领导范儿应助kkzm采纳,获得10
8秒前
随遇而安完成签到,获得积分0
10秒前
李爱国应助会飞的猪采纳,获得10
11秒前
粗犷的谷秋完成签到 ,获得积分10
11秒前
12秒前
13秒前
15秒前
Xiaoming85完成签到,获得积分10
16秒前
16秒前
钰雪心碎发布了新的文献求助10
17秒前
Orange应助舒适路人采纳,获得30
17秒前
苗条一兰完成签到,获得积分10
17秒前
潇洒清炎发布了新的文献求助10
18秒前
日尧发布了新的文献求助10
19秒前
Bennyz完成签到,获得积分10
19秒前
19秒前
老迟到的澜完成签到 ,获得积分10
20秒前
CodeCraft应助AD采纳,获得10
20秒前
XPX完成签到 ,获得积分10
22秒前
22秒前
小摩尔发布了新的文献求助10
24秒前
25秒前
苹果从菡完成签到,获得积分10
27秒前
852应助舒适路人采纳,获得10
29秒前
CipherSage应助缓慢的安双采纳,获得10
29秒前
mori驳回了orixero应助
30秒前
开朗含海发布了新的文献求助10
30秒前
英俊的铭应助言言采纳,获得10
31秒前
ghy完成签到 ,获得积分10
33秒前
情怀应助qt采纳,获得10
33秒前
充电宝应助潘婷婷呀采纳,获得10
33秒前
文艺的念之完成签到 ,获得积分10
33秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784615
求助须知:如何正确求助?哪些是违规求助? 3329736
关于积分的说明 10243308
捐赠科研通 3045037
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391