Finding the right shade of embeddedness: the effect of political embeddedness on green innovation

嵌入性 独创性 政治 价值(数学) 竞赛(生物学) 杠杆(统计) 经济 意外事故 产业组织 业务 营销 社会学 政治学 计算机科学 社会科学 生态学 语言学 哲学 机器学习 法学 生物 定性研究
作者
Fei Tang,Lu Zhang
出处
期刊:Kybernetes [Emerald Publishing Limited]
卷期号:52 (2): 669-687 被引量:2
标识
DOI:10.1108/k-11-2021-1146
摘要

Purpose Few efforts have considered political embeddedness heterogeneity and examined whether different types of political embeddedness can pose different valuation effect on green innovation. Address to this concern, this paper aims to provide a more nuanced conceptualization of different types of political embeddedness and their effects on green innovation. Design/methodology/approach This paper conducts negative binomial method to test our predicts and adopts propensity score match (PSM) and placebo test to mitigate endogeneity issues. Findings The interpersonal political embeddedness (IPPE) has a stronger positive effect on green innovation than the interorganizational political embeddedness (IOPE) and that such effect depends on multiple factors at an individual (i.e. Cheif executive officer (CEO) duality), firm (i.e. firm growth) and environment (i.e. industrial competition) level. Figure 1 is the research model. The relationship is more pronounced when the firm has a dual leadership structure and a high level of firm growth and is less pronounced when a firm is engaged in intensive industrial competition. Originality/value The authors extend political embeddedness literature by introducing and distinguishing the concept of IPPE and IOPE. The authors enrich green innovation research by revealing how corporate green innovation is effected by the IPPE and the IOPE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助金雪采纳,获得10
2秒前
三叶草关注了科研通微信公众号
2秒前
4秒前
xht发布了新的文献求助10
6秒前
冷方荣完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
12秒前
13秒前
makabakala完成签到,获得积分20
13秒前
欣喜宛亦完成签到 ,获得积分10
14秒前
聪明酒窝发布了新的文献求助10
14秒前
yuhui完成签到,获得积分10
14秒前
15秒前
15秒前
小团子完成签到 ,获得积分10
17秒前
lbt发布了新的文献求助10
17秒前
18秒前
Joyce完成签到,获得积分10
18秒前
一个舒发布了新的文献求助30
18秒前
阿树发布了新的文献求助10
19秒前
makabakala发布了新的文献求助10
20秒前
21秒前
22秒前
哈哈哈哈完成签到,获得积分10
23秒前
23秒前
24秒前
碳烤小肥肠完成签到,获得积分10
27秒前
28秒前
29秒前
30秒前
小团子发布了新的文献求助10
31秒前
小地蛋完成签到 ,获得积分10
32秒前
Hello应助makabakala采纳,获得10
32秒前
完美世界应助tingyuan采纳,获得10
32秒前
33秒前
喜欢玩辅助完成签到,获得积分10
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831597
求助须知:如何正确求助?哪些是违规求助? 3373747
关于积分的说明 10481372
捐赠科研通 3093719
什么是DOI,文献DOI怎么找? 1702969
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771319