已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove

红树林 植被(病理学) 高光谱成像 环境科学 归一化差异植被指数 河口 遥感 地理 地质学 生态学 叶面积指数 海洋学 生物 医学 病理
作者
Gang Yang,Ke Huang,Weiwei Sun,Xiangchao Meng,Dehua Mao,Yong Ge
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:189: 236-254 被引量:122
标识
DOI:10.1016/j.isprsjprs.2022.05.003
摘要

As a specific forest community in tropical and subtropical coastal zones, mangrove has unique ecological functions and great social and economic value. Accurate mangrove mapping is important to the protection and restoration of mangrove ecosystem. Traditional classification methods rely on a large number of samples and complex classifiers, which are unsuitable for the large-scale extraction of mangroves because of low computational efficiency and poor generalization ability. This study proposes an Enhanced Mangrove Vegetation Index (EMVI) based on hyperspectral images. This index enhances the difference in greenness and canopy moisture content between mangroves and other vegetation using a green band and two shortwave-infrared bands in the form (Green-SWIR2)/(SWIR1-Green). Six typical mangrove areas (i.e., Qinglan Harbor in Hainan, Zhenzhu Harbor–Fangcheng Harbor in Guangxi, Lianzhou Bay in Guangxi, Zhangjiang Estuary in Fujian, Quanzhou Bay in Fujian, and Oujiang Estuary in Zhejiang) were selected as the study areas, and sample datasets were produced by field surveys and Google Earth high-resolution images. Compared with other VIs, such as the Normalized Difference Vegetation Index, Enhanced Vegetation Index, Moisture Stress Index, Mangrove Vegetation Index, and Combined Mangrove Recognition Index, EMVI exhibited better ability to distinguish mangroves and other vegetation. EMVI was applied to mangrove extraction in the six study areas based on ZY1-02D images, and the extraction results were compared with existing mangrove maps (GMW_2016 and CAS_Mangrove 2015) and the results of SVM. Results showed that EMVI featured the better overall accuracy and the Kappa coefficient than existing mangrove maps and the performance was similar to SVM. Further tests showed that EMVI was also suitable to other hyperspectral remote sensing images (i.e., GF-5, Hyperion, and PRISMA), but not to Sentinel-2 images. These results indicate that EMVI can be applied to different hyperspectral remote sensing images and different types of mangrove extraction. This index also has excellent application potential in mangrove mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信号厂完成签到 ,获得积分0
刚刚
东方月汐梦完成签到 ,获得积分10
1秒前
2秒前
小枣完成签到 ,获得积分10
4秒前
TaoJ发布了新的文献求助10
7秒前
乐观期待完成签到,获得积分10
8秒前
ru完成签到 ,获得积分10
10秒前
10秒前
10秒前
资格丘二完成签到 ,获得积分10
10秒前
13秒前
知性的夏之完成签到 ,获得积分10
13秒前
大个应助从容小白菜采纳,获得10
17秒前
哈哈发布了新的文献求助10
18秒前
谦让惜海完成签到 ,获得积分10
19秒前
Fxy完成签到 ,获得积分10
20秒前
21秒前
21秒前
21秒前
Fancy应助科研通管家采纳,获得20
21秒前
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
田同学完成签到,获得积分20
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
GingerF应助科研通管家采纳,获得50
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
心灵美语兰完成签到 ,获得积分10
23秒前
Ye完成签到,获得积分10
24秒前
罗皮特完成签到 ,获得积分10
26秒前
wu完成签到,获得积分10
27秒前
田同学发布了新的文献求助10
28秒前
29秒前
5km完成签到,获得积分10
31秒前
邱宇宸发布了新的文献求助10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779434
求助须知:如何正确求助?哪些是违规求助? 5647681
关于积分的说明 15451875
捐赠科研通 4910775
什么是DOI,文献DOI怎么找? 2642857
邀请新用户注册赠送积分活动 1590536
关于科研通互助平台的介绍 1544921