重性抑郁障碍
队列
医学诊断
精神分裂症(面向对象编程)
精神科
人口分层
医学
萧条(经济学)
审查(临床试验)
人口
内科学
生物
遗传学
病理
宏观经济学
单核苷酸多态性
经济
基因型
认知
基因
环境卫生
作者
Rosa Lundbye Allesøe,Ron Nudel,Wesley K. Thompson,Yunpeng Wang,Merete Nordentoft,Anders D. Børglum,David M. Hougaard,Thomas Werge,Simon Rasmussen,Michael E. Benros
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2022-06-29
卷期号:8 (26)
被引量:13
标识
DOI:10.1126/sciadv.abi7293
摘要
Currently, psychiatric diagnoses are, in contrast to most other medical fields, based on subjective symptoms and observable signs and call for new and improved diagnostics to provide the most optimal care. On the basis of a deep learning approach, we performed unsupervised patient stratification of 19,636 patients with depression [major depressive disorder (MDD)] and/or schizophrenia (SCZ) and 22,467 population controls from the iPSYCH2012 case cohort. We integrated data of disorder severity, history of mental disorders and disease comorbidities, genetics, and medical birth data. From this, we stratified the individuals in six and seven unique clusters for MDD and SCZ, respectively. When censoring data until diagnosis, we could predict MDD clusters with areas under the curve (AUCs) of 0.54 to 0.80 and SCZ clusters with AUCs of 0.71 to 0.86. Overall cases and controls could be predicted with an AUC of 0.81, illustrating the utility of data-driven subgrouping in psychiatry.
科研通智能强力驱动
Strongly Powered by AbleSci AI