已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Surface-Enhanced Raman Scattering Spectroscopy Combined With Chemical Imaging Analysis for Detecting Apple Valsa Canker at an Early Stage

高光谱成像 化学成像 材料科学 生物系统 计算机科学 人工智能 生物
作者
Shiyan Fang,Yanru Zhao,Yan Wang,Junmeng Li,Fengle Zhu,Keqiang Yu
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:13: 802761-802761 被引量:24
标识
DOI:10.3389/fpls.2022.802761
摘要

Apple Valsa canker (AVC) with early incubation characteristics is a severe apple tree disease, resulting in significant orchards yield loss. Early detection of the infected trees is critical to prevent the disease from rapidly developing. Surface-enhanced Raman Scattering (SERS) spectroscopy with simplifies detection procedures and improves detection efficiency is a potential method for AVC detection. In this study, AVC early infected detection was proposed by combining SERS spectroscopy with the chemometrics methods and machine learning algorithms, and chemical distribution imaging was successfully applied to the analysis of disease dynamics. Results showed that the samples of healthy, early disease, and late disease sample datasets demonstrated significant clustering effects. The adaptive iterative reweighted penalized least squares (air-PLS) algorithm was used as the best baseline correction method to eliminate the interference of baseline shifts. The BP-ANN, ELM, Random Forest, and LS-SVM machine learning algorithms incorporating optimal spectral variables were utilized to establish discriminative models to detect of the AVC disease stage. The accuracy of these models was above 90%. SERS chemical imaging results showed that cellulose and lignin were significantly reduced at the phloem disease-health junction under AVC stress. These results suggested that SERS spectroscopy combined with chemical imaging analysis for early detection of the AVC disease was feasible and promising. This study provided a practical method for the rapidly diagnosing of apple orchard diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gkads给女爰舍予的求助进行了留言
2秒前
3秒前
枫行发布了新的文献求助10
4秒前
Hermen完成签到,获得积分10
5秒前
鹿小新完成签到 ,获得积分0
5秒前
白开水完成签到 ,获得积分10
6秒前
炙热的夜雪完成签到 ,获得积分10
6秒前
Rn完成签到 ,获得积分0
8秒前
后陡门爱神完成签到 ,获得积分10
9秒前
陶醉紫菜发布了新的文献求助30
11秒前
11秒前
12秒前
辣椒完成签到 ,获得积分10
14秒前
leo7发布了新的文献求助10
14秒前
苏子饿了完成签到 ,获得积分10
15秒前
U87发布了新的文献求助80
17秒前
橙子发布了新的文献求助10
20秒前
我是老大应助佳怡采纳,获得10
20秒前
jingutaimi完成签到,获得积分10
21秒前
22秒前
寒梅恋雪完成签到 ,获得积分10
22秒前
Jasper应助leo7采纳,获得10
25秒前
清爽冬莲完成签到 ,获得积分0
26秒前
26秒前
一只小喵完成签到,获得积分10
28秒前
笑点低完成签到 ,获得积分10
28秒前
28秒前
小璐小璐要幸福完成签到 ,获得积分10
29秒前
来学习发布了新的文献求助10
29秒前
橙子完成签到,获得积分10
32秒前
亦hcy发布了新的文献求助10
32秒前
34秒前
Doctor完成签到 ,获得积分10
36秒前
DaWn完成签到 ,获得积分10
38秒前
39秒前
好久不见完成签到,获得积分10
41秒前
may完成签到 ,获得积分10
41秒前
ww发布了新的文献求助10
45秒前
45秒前
matrixu完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655